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Solution 1

PN + *N =35 Mg + 5He
YN + N0 + P

Solution 2

Am = m(products) — m(reactants)
E = Amc?.

This results in -17.2 MeV for reaction 1 and -10.5 MeV for reaction 2. The energy has a negative
sign, meaning energy is released.

Solution 3
We find the following radii:
r(N)=29x10"" m
r(**Mg) =3.5x10"% m
r(*He) = 1.9 x 1071° m.
The Coulomb barrier for nuclei A and B is given by

62 ZaZb

Ve =
Ameg rg + 18

resulting in Vo = 12 MeV and Vg = 6.4 MeV.

For the reaction to happen it is important that the product nuclei can emerge. Given that the
total release of 17.2 MeV for reaction (1) is larger than the second barrier of 6.4 MeV (for the
product nuclei), that is the case.

Nuclear and chemical reaction can happen even when the energy is not sufficient to overcome
the barrier by quantum mechanical tunneling. Tunneling is more probable for light particles. This
effect actually plays a role in making reaction (2) more efficient than reaction (1): a deuteron 2H
can tunnel from one nitrogen nucleus to the other, so there is no need for the two nitrogen nuclei to
come close and to overcome the first barrier.

Solution 4

We can estimate the ionization energy of N6+ using the Rydberg equation for hydrogen-like systems,
given that it is also a one-electron system, but with a 7 times higher nuclear charge. The binding

energy of the electron is:
hcRZ?
fn (4)

with the Rydberg constant hc¢R = 2.179 x 1078 J. This results in an ionization energy of 0.0007
MeV. Given that the ionization energies of the 6 other electrons is even smaller (given the smaller
positive charge of the ion core), we can assume the nitrogen atoms are fully ionized at temperatures
above 1 MeV.

Eying = —



Solution 5

For the collision of two like particles, the dipole moment d = g1 *71 4+ qo xre = q(ry + r2) is
proportional to the center of mass m(ry + r3), which is a constant of motion. Hence, the time
derivative of the dipole moment is zero, meaning no power is radiated.

Electrons are the main radiators in an electron-ion collision, since the relative accelerations
(second time derivetive of 7) are inversely proportional to the masses.



Solution 6

Let \; and \, be the wavelengths of the incident and scattered x rays, respectively, as
shown in Figure 3-18. The corresponding momenta are

_E_M_h
P1 @ pE %
and
o W o
P2 = c ¢ _)\2

using fA = c. Since Compton used the K, line of molybdenum (A = 0.0711 nm; see
Figure 3-15b), the energy of the incident x ray (17.4 keV) is much greater than the
binding energy of the valence electrons in the carbon-scattering block (about 11 eV);
therefore, the carbon electrons can be considered to be free.

Conservation of momentum gives

pl = p2 + pe
or
p: =pi+pi—2pi"p:
= p? + p2 — 2pp,cosH 3-26

where p, is the momentum of the electron after the collision and 6 is the scattering
angle of the photon, measured as shown in Figure 3-18. The energy of the electron
before the collision is simply its rest energy E, = mc* (see Chapter 2). After the colli-
sion, the energy of the electron is (E2 + pZc?)'/2

FIGURE 3-18 The scattering of x rays can
n Pe= 1e- E,2  be treated as a collision of a photon of initial
% e momentum /4/\; and a free electron. Using
E; = hfy - \/ “\f conservation of momentum and energy, the
NETN ’_ ‘;1;}:" e L ,\"\ I momentum of the scattered photon A/\, can
Pii=iUA \/Ie be related to the initial momentum, the
B E. = ht electron mass, and the scattering angle.
2 = iy . .
The resulting Compton equation for the
P2 = hlk,

change in the wavelength of the x ray is
Equation 3-25.

Conservation of energy gives
pic + Ey = pyc + (E§ + pic?)'?
Transposing the term p,c and squaring, we obtain
Ej + *(p1 — p2)* + 2¢Eo(p1 — p2) = E§ + pic?
or

2Ey(py — p2)
c

p2=pt+pi—2pp, + 3-27

Eliminating p? between Equations 3-26 and 3-27, we obtain

Eo(Pl - Pz)

5 = pip2(1 — cosB)

Multiplying each term by hc/p,p,E, and using \ 6 h/p, we obtain Compton’s
equation:

hc hc
=N = E—(l — cosf) = W(l — cosf)
0

or

h
N — N = %(1 — cosB) 3-25



For 0 = 7 is A\ at its maximum.

Solution 7

No, the rate for cooling through bremsstrahlung is always larger than the rate for releasing energy
through fusion of two nitrogen nuclei. Hence, the fusion reaction cannot be sustained.



Falling Slinky (answers)

The physics of a falling slinky has been discussed among others by prof. Shimon Kolkowitz in
http://large.stanford.edu/courses/2007/ph210/kolkowitz1/

and by Daniel Walsh in
http://danielwalsh.tumblr.com/post/11566016253/explaining-an-astonishing-slinky

but there are also many alternative descriptions available, like for instance the one presented below.

a) The pulling force in each part of the slinky is determined by its relative local extension, such
that Hooke’s law can be written as F(x)=kdL/dx, where the coordinate x € [0,1] denotes the
position on the slinky. As this force has to lift the lower part of the slinky F(x)=mgx= kdL/dx.
Integration of this equation yields the shape of the slinky L(X)=[mg/(2k)]x2. The total length of
the slinky is Lo=mg/(2k) is needed for later reference.

b) When the top part of the slinky is falling, the bottom part doesn’t yet notice this because its
local shape hasn’t yet changed. The acceleration of the top part is faster than that of a free-
falling object, as this top part experiences the pulling force of the lower part.

c) In order to calculate how long it takes for the top of the slinky to reach the bottom of the
slinky, you don’t need to solve its full equation of motion. It is enough to consider the
motion of the center of mass of the slinky, which is originally positioned at Lo/3 above the
bottom of the slinky. This center of mass moves as any free falling object does and reaches the
bottom at a time tra that obeys the equation (Lo/3)=(g/2)(tran)2 This yields trn= (2Lo/3g),
which is a factor 3 shorter than the fall time ¥(2Lo/g) of a point-like object falling over a
distance Lo.

d) We can derive an equation for the distance AL(t) travelled by the top of the slinky at a time t
after ‘launch’, up to moment when it reaches the bottom of the slinky, by combining the
equation for the motion of the center of mass with the observation that a compression wave
travels neatly from top to bottom through the slinky. When at a time t a fraction y=1-x of the
top of the slinky has collapsed, the position of the center of mass with respect to the bottom of
the slinky can be written as Lo/3-Y2gt>=Lo(x?-(2/3)x®). This equation describes how the slinky
contracts in time, but the solution x(t) is far from trivial. Its time derivation yields the
expression dx/dt=-gt/[2Lox(1-x)] and the real speed v=-dL/dt=-2Lox.dx/dt=gt/(1-x). As an
alternative approach towards a solution, we can consider the acceleration of the contracted top
section of the slinky, which as dv/dt=g/(1-x). | would like to check whether these two
approaches yield the same result. | would also like to proof that the rest of the slinky remains
unaffected when the top part contracts, but this might be too difficult for now.


http://large.stanford.edu/courses/2007/ph210/kolkowitz1/
http://danielwalsh.tumblr.com/post/11566016253/explaining-an-astonishing-slinky

Charged particles around a black hole (with solutions)
In this exercise, the unit system ¢ = G = 1 is used. All answers can be expressed in these units.

The spherically symmetric vacuum solution of the Einstein Field Equations
1
RI'I’V - §guyR — 87TT/,L1/

is given by the famous Schwarzschild spacetime: a non-rotating black hole of mass M. If this spacetime is
doused in a constant magnetic field Fr, that is small enough to have negligible effect on the curvature of

spacetime, equatorial and circular motion of a charged particle of mass m and charge q is given by:

i (1 - 21”) (uh)? —r (1 - 2M> (W) = LTy

in here, u» = (W, u, W8, ) is the 4-velocity of the particle, measured in proper time 1. All these velocities
are constant. The only non-zero component magnetic field B corresponding to F', is perpendicular to the

. 2M
|F<,D| = |B9| = |BZ|T (1 - T)

equatorial plane, using that in this geometry

a).

Explain, without calculations, for each of these velocities ( ut, ur, u®, ur) why it is constant.

Solution:

Since the motion is in the equatorial plane and circular, 8 = const, r = const, giving u® = 0, ur = 0.
The orbital velocity is constant as the forces do not change along the orbit, making u® = constant.
Finally, since the velocity respectively the distance are constant, the special relativistic time dilation
respectively gravitational time dilation are necessarily constant, leading to ut = 0.

This particle does not simply follow the usual (Newtonian) Kepler’s Third Law, but a modified one based on
the fact that it moves in a gravitational field and is subject to a magnetic field.

b).
Show that the modified version of Kepler’s Third Law is given by

uw

r r 2
CEE(ER) (-4
2

R(- )

in which R is the radius of the circular orbit.

Solution:

From the line-element or the normalisation of 4-velocity, guwutuv = -1, which for this situation
(Schwarzschild and circular orbit, using results from a) results in -(1-2M/R)(ut)z + r2 (u®)2 = -1.
Using the relation between ut , u® stated in the exercise, a quadratic equation for the angular
velocity can be obtained, which has the requested as its outcome.



In absence of a magnetic field, the smallest allowed circular orbit around a Schwarzschild black hole has
radius R = 3M . From the result of exercise b, we see that circular motions exist around the black hole with
smaller radii, provided the magnetic field is large enough. A magnetic dipole field Fr, with magnetic dipole

moment u in a Schwarzschild spacetime, can be shown to be given by:

.l _2M _ ,0h o _ 3R? 2M 2M  2M?
F@_R2( R>(h RaR in which h(R)—8M3 In (1 7 + 7 + 2

This results in some interesting regions R of allowed circular orbits. For a range of values u > 0, there exists
a region 2M < R < 3M in which no orbits are allowed: a forbidden zone.

However, if u is made big enough, circular orbits are allowed for all values R in between 2M < R < 3M, and
the forbidden zone disappears.

c).
From the expression in exercise b, calculate the formula for the non-zero
magnetic field strength u needed to make the forbidden zone disappear.

Solution:

The ‘forbidden zone' is the result of the 4-velocity being a non-real expression,
which is when the discriminant of the Kepler’s Third Law above is positive. The
point at which it flips from negative to positive is when the discriminant is zero.
Substituting the expression for Fry, given above, the expression for the magnetic

dipole moment can be found to be:
9 aM 3M m?2 R* 1
pr=——0 (== (=
R R q 1— 2M (h ah)2

R T OR

While the particle is doing its orbiting, it will send out both electromagnetic radiation as gravitational waves,
losing energy due to both in the process. In what follows, we will investigate the stability of these orbits under
sending out of this energy.

To do so, we will need the energy loss due to electromagnetic radiation. Maxwell’s electrodynamics teaches
us that the power Peec sent out by an accelerating particle in the non-curved background of Minkowski
spacetime is given by

2.4
q — J e —
Pelec: %( 2—{—’)/2(1)'@)2)

in which vy is the special relativistic Lorentz-factor, v is the particle’s orbital velocity, and a its corresponding
acceleration, both measured in t.

d).
From Newton’s second law dp/dt = F in a Minkowski background and from the
Minkowski line-element, show that in our current situation the following hold:

G = 2 7]
v2m

_|B.| i =0



in which the inner product is the usual three-dimensional dot-product.

Solution:

The Minkowski line-element and/or the normalisation of 4-velocity nuuruv= -1 can be
differentiated with respect to proper time to result in nuy u# duv/dt = 0. With the time-
dilation being constant, what remains is nju' du/dt = 0, resulting what is requested.
From the Minkowski version of Newton’s Second Law: the right hand side is F=y q (v
cross B; ). With the magnetic field only having a z-component, this force only points in
x- and y-directions, Fx =q vy Bz, Fy=-q vxB:. The left hand side is, usingp =y m v,
equal to y3ma. Setting equal and taking the magnitude on both sides results in the
requested expression for the acceleration.

Using the result of exercise d, we can calculate the electromagnetic energy loss in a Minkowski background.
The power sent out by gravitational waves for a mass m in a circular orbit around a mass M is, in a
Minkowski background, given by the Peters-Mathews equation:

(mM)3/°

_ 32 10/3 ) . o

Taking the ratio of Peec and Psw, we can now calculate which of the two radiations dominates the energy
loss. However, the formulas for the powers studied in ¢ and d work in a Minkowski background. In our
current situation we need a Schwarzschild background.

e).

Explain how the ratio between electromagnetic power and gravitational wave power
changes when we move from Minkowski background to Schwarzschild background.
Note: no calculations necessary.

Solution:

The ratio of the electromagnetic radiation and gravitational wave energies here given
is in the Minkowski background. When going to a Schwarzschild background, both
types of radiation will experience redshift, the amount of which is the same for both
types due to the Strong Equivalence Principle. This results in the ratio staying
unchanged when going from Minkowski to Schwarzschild.



(a)

(b)

Supersymmetric quantum mechanics and exactly solvable models.

Solution

Consider two Hamiltonians, H, = ATA and H, = AAY, where

. d
A=+ W) (1)

with real W (x). Show that Hy and H, are Hermitian operators with non-negative eigenval-

ues.
Hermiticity:

A} = (A7) =47 (&) =itd=n, @)
and similarly for A>.

Non-negativity of energy: Consider an expectation value of H in a state |y):

~ o0 e oo n % A
Wity = [ dxy' ATy = [ ar(@p) (Ay) = 910),  ©)

—0Q

where |¢) = A|y). Since the norm of any physical state is non-negative, (y|H;|y) > 0. If

|y) is an eigenstate of | with the energy €, then

(wlk|y) =€ >0, )
where we assumed that |y) is normalized by (y/|y) = 1. The proof for A, is similar.

Prove that if Hy has an eigenfunction v, (x) with a nonzero energy €, then there is an eigen-

function y(x) of Hy with the same energy. Find a relation between Wi (x) and W (x).

From Hi|y1) = &|y;) we obtain

AHy|y) = eAlyn). (5)
Noting that
AR\ |y) = AA"Aly) = B wn), (6)
we find
| y) = €|ya), (7

where |y») = Avj;. Similarly, for the eigenstate |y,) of A, with the energy €, we have
Ai|yn) = ATAAT [yn) = AT |yn) = eA'|yn), (8)

so that |y;) = AT|ys) is the eigenstate of H; with the same energy.



(©)

(d)

Prove that the zero-energy eigenfunction W (x) of Hy (if it exists) satisfies

The answer to question (b) does not hold for € = 0. If H;|y;) = 0, then

(wi|Hi|yn) = (9|¢) =0,

)

(10)

(1)

where |¢) = A|y) [see Eq.(3)]. The norm of the state |¢) is only 0, when ¢(x) = 0.

Hence,

tion ATy (x) = 0 for all x.

y1) satisfies Eq.(9). Similarly, from A,|y,) = 0, we obtain that the wave func-

It is easy to solve Eqs.(5) and (6) for arbitrary W(x) and show that only one of the two

Hamiltonians (or none) can have the zero-energy eigenstate.

To shorten the problem, you were not asked to verify these statements, but the solution of

A d
Ay = —ﬂJrW‘lfl =0
dx

] = exp [ arwiz))

and the solution of Eq.(10) is
X
Vs (x) o< exp (—/ dx'W(x')) :
0
Clearly, y;(x) and y»(x) cannot be both normalizable.

Show that for W (x) = N tanh(x),

N(N-1)
cosh?x

N(N+1)

Vi(x) =N>— and Vs(x) =N?—

First, we notice that

cosh?x

(12)

(13)

(14)

(15)

(16)



(e

®)

(the operator % = % p, where p is the momentum operator, changes sign under Hermitian

conjugation). Therefore,

d 2
H=——+W —(x)=— V
A 2, dW d?
b= W) - 2 (x) = —— + V.

The rest of the calculation is straightforward:

dwW N h2x—1 N(N —1
LW gl N geleoshixm ) NV-D g

Vilx
1) dx cosh?x cosh?x cosh?x

and similar for V5 (x).

For N =1, Vi(x) = 1. Find the ground state energy € and the corresponding eigenstate
v1(x) of Hy. Find the eigenstate v, (x) of Hy with the same energy. Argue that W,(x) is not

the ground state of H,.

The eigenstates of H; = —% + 1 are plane waves, ¢/, and the state with k = 0, y; (x) = 1,

has the lowest-energy state € = 1. Then,

V) (x) = Ay (x) = tanh(x). (18)

The ground state wavefunction for the potential V,(x) =1 — sz(x) should be an even func-

tion of x and should have no zeros at finite x (oscillation theorem), so tanh(x) cannot be the

ground state wavefunction.

Show that the ground state energy of Hy is 0 and find the corresponding wave function.

Argue that H, has no other bound states.
Hint: Solve Eq.(10) for W (x) = tanh(x).

The solution of

) d
Aty(x) = d—i’ +tanh(x)y = 0 (19)

is

y(x) =Aexp <— /Oxdx' sinh(x’) ) = Aexp (—In(coshx)) = (20)

cosh(x') cosh(x)’
where A = % is the normalization constant and we used %cosh(x) = sinh(x). It is the
wavefunction of bound state. The Hamitonian A, has no other bound states with the energy

€: 0 < £ < 1, because then H; would have an eigenstate with the same energy, but the lowest



energy in the spectrum of A is 1. The states with £ > 1 belong to the continuum spectrum

for both Hamiltonians.

To summarize, the Hamiltonian

. d? 2
H=——5——5 21
dx?>  cosh®x @b
has one bound state with the energy € = —1, the wave function of which can be found
analytically. Considering N = 2,3, ..., one can find in a similar way the wave functions and

. . . Y 2
energies of bound states of the Hamiltonian H = —% — Iig;]t;i)

, but we stop here.

The Hamiltonian 1:11 , for N = 2, coincides with 1:12, for N = 1. Acting with the operatorA on
the bound state of A, (N = 2), one obtains a bound state of the H,, for N = 2, which again
cannot be its ground state because the A is odd under x — —x. Hence, the new H, should

have a zero-energy state, etc etc.



Measurement of the B meson decay time distribu-
tion at the PEP-II collider

An ete™ collider is a collider that collides electrons (e¢~) with positrons (e™). If the
beam energies are chosen such that the total energy is around 10 GeV (about 10
times the proton mass), several resonances can be seen (Fig. 1). These resonances
are called the Upsilon (T) resonances. They are meta-stable states bb states, where
b is the bottom (or ‘beauty’) quark.

25
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Figure 1: Particle production as a function of centre-of-momentum energy in the
region of the Upsilon states as measured by the CUSB detector at Cornell in 1980.

Beauty mesons are mesons consisting of a beauty quark and a lighter anti-quark
(or vice versa). The quark content of the four lightest beauty mesons is

B = db B =db Bt =ub B~ =aub

The rest mass of the B and B* meson are almost identical, approximately mp =
5.279 GeV/c*. The Y(4S5) resonance at My = 10.580 GeV/c* (the right-most
bump in the figure) is just heavy enough for the decay into two beauty mesons:
The majority of events at this collision energy is either ete™ — Y(4S5) — B°B° or
efe” — Y(4S) —» BTB™.

The decay of the upsilon to the two B mesons is a two-body decay: In the
upsilon rest frame (also called the centre-of-momentum-system, or ‘cms’), the two
B mesons fly in opposite direction with the same momentum.

(a) Compute the momentum peys of a B meson in the upsilon rest frame. Express
your answer in My and mp.
(Here, and in the remainder of the exercise, you may choose to work in natural
units, such that ¢ = 1.)

Answer: My =2y/m% + p?/c? = p=c\/M}/4—m% ~ 0.34 GeV/c

The PEP-II collider in Stanford is an e*e™ collider tuned at the T (4.5) resonance.
PEP-II is an asymmetric collider: the positron beam has a lower energy than the
electron beam, such that the two B mesons are boosted. The B mesons fly with
almost the same velocity parallel to the electron beam.



(b) Given that the positron beam has an energy of £, = 3.1 GeV, compute the
energy F_ of the electron beam. You may ignore the electron and positron
mass, e.g. assume p(e™) = E,/c and p(e”) = E_/c. Express the answer in
terms of Ey and Mr.

Answer: E_ = (Mvyc?)?*/4E, ~9.03 GeV.

Ignore the electron/positron mass. Electron and positron travel in
opposite directions along a common axis. Assume the electron to
travel in the positive z direction. The total Upsilon momentum is
then p, v = E_ — E,. The total energy is £y = E_ + E,. Therefore,
the length-squared of its four-vector (EF_ + E,)? — (E_ — E,)? =
4E_E,. This needs to be equal to M3.

(¢) Compute the momentum py,, of a B mesons in the laboratory frame ignoring
its momentum in the centre-of-momentum frame: That is, assume that the B
particle is at rest in the Y(4S5) rest frame. Express your answer in My, mp,
E_and E,.

Hint: Remember that p = vBmc, where v is the boost factor. Compute the
boost factor v( for the upsilon. If you ignore the velocity of the B in the upsilon
frame, the boost factor for the B mesons is identical to that for the upsilon.

Answer: ppc= (E_ — E.)mp/my ~ 2.96 GeV.
The more complicated answer will include a correction for the B mo-
mentum in the cms, which depends on the B polar angle. The average

will then be the quadratic sum (pg) = \/((E_ — E{)mp/m~)2 + M2 /4 —m?,
which is just a tiny bit larger.

The decay time-distribution of an unstable particle usually follows an exponen-

tial law
N(t) = Nye /" (1)

where 7 is the mean decay time. B mesons have an average lifetime 75 of about
1.5 ps. Due to a phenomenon called C' P-violation there exists decays for which the
decay time distribution of B® — X is different from the decay time distribution of
B% — X. The aim of the experiment at Stanford is to measure this small difference.
Therefore, it is important to measure the decay times very precisely.

The decay length Ly, is the distance between the point of decay and the point
of production of the B meson in the laboratory frame. The decay time in the
laboratory is computed by dividing the decay length by the measured velocity:

tHab = (2)

(d) Show that the proper decay time ¢ (e.g. the decay time in the rest frame of the
B meson) can be computed as

LmB
p

t =

(3)



where m is the B meson rest mass, and p and L are respectively the B momen-
tum and decay length in the laboratory frame, or any other frame in which the
B meson is not at rest.

Answer: Denote the velocity of the B meson with v},;, = Sc. This can
be expressed in terms of the momentum with p., = ympvn,. The
decay time in the lab t,}, is related to the decay time t in the rest frame
by tia, = 7t. Therefore, we have: t = tn,/7 = Lap/(Y01ap) =

Llab/ (’750) = leab/ (’Yﬁmc) = leab/plab

(e) Compute the average B meson decaylength (the distance a B meson travels
before it decays) in the cms frame. Express the result in the average proper
time 75, mp and your answer to exercise a.

Answer: Lens = TPBems / mp ~ 0.029 mm.
(The students are not asked to give the numerial answer at this stage,
but they’ll need it to answer the exercise (g).)

(f) Compute the average B meson decaylength in the laboratory frame, ignoring
the velocity of the B meson in the e*e™ rest frame. Express the result in 73,
mp and your answer to exercise c.

Answer: Ljp, = Tpplap/mp ~ 0.25 mm.

It is technologically easier to build a symmetric-energy collider (e.g. with E, =
E_) than an asymmetric-energy collider. Yet, it was chosen to use the latter strategy
for the PEP-II collider.

(g) The decay time resolution is determined by the decay length resolution. The
latter is limited by technology: Typical particle detectors can reach a precision
of about o(L) = 100 wm. Explain why the PEP-II collider was built as an
asymmetric collider.

Answer: The decay time resolution is essentially o(t) = o(L)mp/p:
For a given decay length resolution, the decay time resolution de-
creases with the momentum (or velocity). Therefore, the larger the
momentum in the lab frame, the more precise one can measure decay
times. To understand how much of a difference it makes, we compute
the average decay length in the cms frame and in the lab frame:

L PB,cms PB,cms €
cms — T = TC 2
mpg mpg ¢
2
= TcC —1
4mA
10.58
~ (1.5 ps)(3 - 10® In/s)\/<2 : 5.28> — 1~ 0.029mm



Ly = CpB,labQC
mpcC
1 E_ —-F
= TcC (E_—EJF)@:TC—+
mpc? my My 2
9.0 —3.1
~ (1. - 108 T x0.2
(1.5 ps)(3-10° m/s) 1058 0.25mm

(At this stage it is important to reintroduce the eventually omitted
factors ¢: We do that by expressing mass an momentum in terms
of mc? and pc respectively.) In a symmetric collider the average
decay length of the B is about 30 micron, which is smaller than the
detection resolution. In an asymmetric collider as PEP-II, the decay
length is larger than the resolution, thanks to the ‘boost’. This allows
to measure the decay time with sufficient accuracy.



Vraag

Lichtabsorptie door een photosysteem gevolgd door ladingsscheiding.

Een fotosysteem bestaat uit een honderdtal pigmenten die met elkaar gekoppeld zijn, zodat
ze na absorptie de excitatie energie zeer snel aan elkaar kunnen overdragen.

6% van de pigmenten (het reactiecentrum) is in staat om de excitatie

door ladingsscheiding irreversibel om te zetten in een chemisch andere toestand.

de andere 94% van de pigmenten wordt antenne genoemd.

op deze manier wordt dus licht omgezet in chemische energie, die verder gebruikt wordt om
CO2 vast te leggen.

neem aan dat alle pigmenten een gelijke energie hebben.

1. hoeveel procent van de tijd is een excitatie dan in het reactiecentrum?

2. hoeveel procent van de tijd is een excitatie dan in de antenne?

3. neem aan dat een geéxciteerde toestand een natuurlijke levensduur heeft van 1
nanoseconde. neem aan dat de snelheid van ladingsscheiding overeenkomt met
een levensduur van 1 picoseconde. De vervalsnelheid is het omgekeerde van de
levensduur. Wat zijn de bijbehorende vervalsnelheden?

4. watis dan het rendement van dit fotosysteem, maw hoeveel procent van de
geabsorbeerde fotonen wordt door ladingsscheiding omgezet in een chemisch andere
toestand? Neem aan dat de snelheden van energieoverdracht tussen antenne en
reactiecentrum veel groter zijn dan de natuurlijke vervalsnelheid, en daarom buiten
beschouwing kunnen blijven.

5. hoe zorgt de natuur dat de ladingsscheiding irreversibel is?



Antwoordmodel

Lichtabsorptie door een photosysteem gevolgd door ladingsscheiding.

Een fotosysteem bestaat uit een honderdtal pigmenten die met elkaar gekoppeld zijn, zodat
ze na absorptie de excitatie energie zeer snel aan elkaar kunnen overdragen.

6% van de pigmenten (het reactiecentrum) is in staat om de excitatie

door ladingsscheiding irreversibel om te zetten in een chemisch andere toestand.

de andere 94% van de pigmenten wordt antenne genoemd.

op deze manier wordt dus licht omgezet in chemische energie, die verder gebruikt wordt om
CO2 vast te leggen.

neem aan dat alle pigmenten een gelijke energie hebben.

1. hoeveel procent van de tijd is een excitatie dan in het reactiecentrum?
6%

2. hoeveel procent van de tijd is een excitatie dan in de antenne?

94%

3. neem aan dat een geéxciteerde toestand een natuurlijke levensduur heeft van 1
nanoseconde. neem aan dat de snelheid van ladingsscheiding overeenkomt met
een levensduur van 1 picoseconde. De vervalsnelheid is het omgekeerde van de
levensduur. Wat zijn de bijbehorende vervalsnelheden?
1nsten 1ps?

4. watis dan het rendement van dit fotosysteem, m.a.w. hoeveel procent van de
geabsorbeerde fotonen wordt door ladingsscheiding omgezet in een chemisch andere
toestand? Neem aan dat de snelheden van energieoverdracht tussen antenne en
reactiecentrum veel groter zijn dan de natuurlijke vervalsnelheid, en daarom buiten
beschouwing kunnen blijven.

6%*1ps?/(6%*1ps?+94%*1ns?)=60/(60+0.94)=98.46%
5. hoe zorgt de natuur dat de ladingsscheiding irreversibel is?

Doordat de ladingsgescheiden toestand een veel lagere (Gibbs vrije) energie heeft is de
ladingsscheiding praktisch irreversibel.
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