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1 The power of accretion

Prof. dr. S.B. (Sera) Markoff
Anton Pannekoek Institute of Astronomy - University of Amsterdam

10 points

(a) Consider hydrogen gas captured at a very large distance, in orbit around a maximally rotating 10 solar mass
black hole. Assume it eventually reaches the event horizon with radius Rhor = GMBH/c

2, where MBH is the mass,
and that the energy gained on infall is converted into internal heat. What is the average temperature of the gas?
Solution: The potential energy of the gas would be,

E = −GMm

R
(1)

Now, the energy loss is ∆E = E(R)− E(∞). We get,

∆E = −GMm

R
(2)

Boltzmann constant kB = 1.38 × 10−16 erg K−1, solar mass M� = 2 × 1033 g, electron mass me = 9.1 × 10−28 g,
proton mass mp = 1.67×10−24 g, gravitational constant G = 6.67×10−8 cm3 g−1 s−2 and the event horizon radius
for a maximally rotating black hole is Rhor = GM/c2, where c = 3× 1010 cm s−1 is the speed of light.

∆E =
GM(mp +me)

Rhor
≈ GMmp

Rhor
(3)

Use Rhor = GM/c2, we get ∆E = mpc
2. Equating this to thermal energy ∆Eth = 2 × (3/2)kBT (a factor “2” for

the two particles- one electron and one proton). Thus we get,

T =
mpc

2

3kB
≈ 1012K (4)

Order-of-magnitude estimates are okay.

(b) If the gas is fully ionised it will form a plasma. Consider plasma near the black hole with velocity ~V , electric field
~E and magnetic field ~B (all quantities are measured in the lab frame). In ideal magnetohydrodynamics (MHD),
the plasma is assumed to be highly conducting (conductivity σ → ∞). Prove that the Lorentz force on a charged

particle vanishes in the comoving frame. Using the result of your proof, find the relationship between ~E, ~V , and ~B
in the lab frame. [Hint: What is the force in the lab frame? ]

Solution:
Using Ohm’s law ~J ′ = σ ~E′, we can see that even a small electric field ~E′ in the comoving frame can give rise to
large currents, which will initialize charge flow and rapidly lead to neutrality. Thus the electric field shorts itself
out. By definition, in the comoving frame the plasma is at rest, so the magnetic force also vanishes. As a result,
for an arbitrary charge q the Lorentz force law yields

~F ′ = q ~E′ + q
~V ′

c
× ~B′ = 0. (5)

From eq. 5, as there is no acceleration in the comoving frame, there will be no acceleration observed in any inertial
frame. Thus the Lorentz force law in the lab frame yields

~F = q ~E + q
~V

c
× ~B = 0⇒ ~E = −

~V

c
× ~B (6)

(c) Around black holes, magnetic fields can actually dynamically dominate the flow. Show that under the additional

assumptions of axisymmetry (∂/∂φ→ 0) and time–independence (∂/∂t→ 0), ~Eφ vanishes. In MHD it is convenient

to decompose vectors in the form: ~B = Bpp̂+Bφφ̂ where the Bp is called the poloidal component of the magnetic
field (in the R− z plane) and Bφ is the toroidal component. Now, using the decomposed vectors and Eφ = 0, prove
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that ~Vp = κ~Bp where κ is a proportionality constant.

Solution:
The electric field can be expressed in terms of the electromagnetic potentials, which under the assumption of time
independence gives us

~E = −∇Φ− ∂A

c∂t
= −∇Φ, (7)

where Φ is the scalar potential. The assumption of axisymmetry gives

Eφ = − 1

R

∂Φ

∂φ
= 0., (8)

where R is the cylindrical radius.

On expressing ~V = ~Vp + ~Vφ and ~B = ~Bp + ~Bφ, in terms of their poloidal and toroidal components (denoted by
the subscripts p and φ respectively), the cross product now yields

− c ~E = ~V × ~B = ~Vp × ~Bp + ~Vp × ~Bφ + ~Vφ × ~Bp + ~Vφ × ~Bφ (9)

Only the first terms’ cross product yields a φ directed vector. Thus, we have −c ~Eφ = ~Vp × ~Bp = 0. For the cross
product of two non–zero vectors to vanish, they must be parallel and therefore

~Vp = κ~Bp, (10)

where κ is some constant. To summarize: the poloidal components of the magnetic field and velocity are aligned!

Black holes systems (and other compact objects) are known to launch magnetised jets of plasma along their poles.
Why?

(d) Using conservation laws, we can show that Vφ − κBφ = RΩ (where κ is the same proportionality constant for
part (c) and Ω is the local angular speed) and use it for a simplified expression of the electric field. Now compute
the Poynting flux from the plasma using the expressions for the electric and magnetic fields you obtained in the
previous problem.

Solution:

The Poynting flux is given by:
~S =

c

4π
~E × ~B. (11)

Using eq. 9 the non zero electric field terms are

− c ~E = ~Vp × ~Bφ + ~Vφ × ~Bp. (12)

Let us define the unit vector along the poloidal direction to be p̂ and along the toroidal direction as φ̂. The unit
vector normal to the plane containing these two unit vectors is defined as

n̂ = p̂× φ̂. (13)

Thus the electric field can be written as

− c ~E = κBpBφn̂− VφBpn̂ = Bp(κBφ − Vφ)n̂. (14)

Working the ~E × ~B term using ~E =
BpΩR
c n̂, we get

~E × ~B = ~E × ~Bp + ~E × ~Bφ = −BpBφΩR

c
p̂+

B2
pΩR

c
φ̂ (15)

(e) Calculate the electromagnetic power transported by the Poynting flux in the poloidal direction passing through
an area of arbitrary radius R. Use the fact that angular momentum conservation provides a relation between the
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poloidal and toroidal components of the magnetic field: Bφ = ΩRBp/c.

Solution:
Power due to Poynting flux: PEM = |~S.∆ ~A|, where ∆ ~A = πR2p̂

PEM =
c

4π

BpBφΩR

c
πR2 (16)

Using Bφ = ΩRBp/c, we have
PEM = (ΩR2Bp)

2/4c (17)

(f) The upper limit of this electromagnetic power will be when all of the gravitational potential energy released goes
into the magnetic energy. For this limiting value, calculate the strength of the poloidal magnetic field (Bp) rotating

with the Keplerian angular velocity (ΩK =
√
GMBH/R3) over the event horizon area of a maximally rotating 10

solar mass black hole. Assume a mass accretion rate Ṁ = 2.2× 10−8 solar masses per year (i.e., just a tiny fraction
of captured mass from a companion star).

Solution: The Keplerian angular velocity is ΩK =
√
GM/R3. Thus we have,

PEM = (ΩR2Bp)
2/4c =

1

4c

GM

R3
R4B2

p =
GMRB2

p

4c
(18)

Available gravitational power= Pgrav = GMṁ/(Rhor). Place PEM = Pgrav. maximally rotating black hole, and
therefore, Rhor = GM/c2. For a 10 solar mass black hole with mass accretion rate ṁ = 2.2× 10−8 solar masses per
year = 1.4× 1018 g s−1, we get,

B2
p =

4ṁc

2R2
hor

=
2ṁc5

G2M2
⇒ Bp ≈ 2× 108G (19)

For comparison, the average magnetic field of our sun is of the order of 1-10 Gauss. So, you can see just how strong
the magnetic fields are in the vicinity of black holes! Gravity ultimately powers electromagnetic fields that channel
accretion power into, and accelerate, outflows and jets. This is why black holes and other compact objects like
pulsars are able to launch powerful outflows!!

Figure 1: The Universe
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2 Higgs mechanism in electrodynamics

Prof. E. Laenen
Institute for Theoretical Physics - University of Amsterdam

10 points

Figure 2

The Higgs mechanism of particle physics explains why certain particles have a mass rather than being massless like
the photon propagating in vacuum. In this problem we shall see that such a situation already occurs in electrody-
namics, for a magnetic field inside a BCS superconductor. In a BCS superconductor bound electron pairs (Cooper
pairs) form a Bose condensate, which can act as a superconducting current.

Consider the setup of figure 2, in which there is a constant magnetic field pointing in the z direction outside the
superconduting material. The material spans the entire region x ≥ 0. A priori we know nothing about the magnetic
field inside the material.

It is a special property of superconductors that the current density j inside is related to the vector potential in the
material as

j = −m2
AA, (20)

where mA is a constant. In a more detailed analysis it turns out that mA = µ0nse
2/m with ns the number density

of Cooper pairs, e,m the electron charge and mass, but that is of no relevance here. Note that for convenience we
rescaled the current density j ≡ µ0J .

a) (2 pts) Show that from (20) one can derive the second order differential equation

(∇2 −m2
A)B = 0 . (21)

Hint : You may wish to use the identity ∇× (∇×C) = ∇(∇ ·C)−∇2C.

Solution: Consider the curl of the current, and rewrite

∇× j = −m2
A∇×A = −m2

AB (22)

From the Maxwell equations we know ∇×B = j. Take the curl of this equation, use the hint, and again a Maxwell
equation: ∇ ·B = 0. This leads to (21).

b) (2 pts) Show that Bx = By = 0 inside the material.
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Solution: We use a boundary condition analysis. Imagine a gaussian volume that extends on both sides of the
interface in figure 2. By the integral form of ∇ ·B = one concludes that Bx is zero inside the material, since is also
zero outside the material. To show that By = 0 using the integral form of Ampère’s law, imagine a Ampere loop in
the y-direction extending on both sides of the interface (with vanishing extent in the x-direction). With By = 0 in
air, we have that By = 0 inside the material as well. Of the same is not true for the z direction.

c) (1 pts) Show that the general solution to the result of (21) can be written as Bz(x) = C1e
x
d + C2e−

x
d . How

does d depend on mA? How does this solution change if we add ∇λ to A in (20), in which λ is an arbitrary function?

Solution: With the result of part b), we have that (21) reads ∂2
xBz(x) = m2

ABz(x), to which

Bz(x) = C1e
x
d + C2e−

x
d (23)

is the general solution, with mA = 1/d. We have written it in this way to make the exponents manifestly dimen-
sionless. Changing

A→ A + ∇λ (24)

does not change the solution, since ∇ ×A does not change. This change of the vector potential without physical
consequences is called a gauge transformation.

d) (1 pts) Why must C1 vanish? Use boundary conditions to fix C2.

Solution: Clearly at x = +∞ we want the solution to be finite, hence C1 = 0. Using that Bz(0) = B0 (see figure)
we have C2 = B0.

e) (2 pts) Check that your solution is consistent. I.e. given your result for the magnetic field, calculate the current
density j, use (20) to obtain the vector potential A and consequently calculate the magnetic field B.

Solution: Since j = ∇×B we can compute this curl and find mAB0e−xmA ŷ. Since also j = −m2
AA we have

A = − 1

mA
B0e−xmA ŷ ,

so that B = ∇×A = B0e−xmA ẑ indeed.

f) (2 pts) Sketch the magnetic field for x = −5d to x = 5d. Indicate the characteristic attenuation length x = d in
the plot.

Solution: the sketch can look roughly as follows
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Figure 3

The result of our analysis is that magnetic fields are absent inside a superconductor, except in a very thin boundary
layer. This phenomenon is known as the Meissner effect. The parameter mA functions as an effective photon mass.
Forces mediated by massive particles are in general short-range, hence the Meissner effect can be understood as the
photon acquiring a mass inside the superconductor.
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3 QUESTION M (Microtubule Length Control)

Prof. dr. ir. E.J.G. (Erwin) Peterman
LaserLab - Vrije Universiteit

10 points

a) These arguments can be made more systematically by appealing to simple rate equations of the form

ni(t+ ∆t) = ni(t) + kbind∆t+ ni−1(t)v∆t− niv∆t, (25)

which can be rewritten as
dni
dt

= kbind + ni−1v − niv. (26)

In steady state, this implies that

ni = ni−1 +
kbind
v

. (27)

This difference equation has the solution already quoted above. A second way to the same result is to exploit
the approximation

ni−1 ≈ ni −
∂n

∂x
a (28)

Resulting in

dn

dx
=
kbind
av

(29)

which implies that

n(x) =
kbind
av

x = i
kbind
v

, (30)

precisely as was asserted earlier. (N.B. kstep = v)

b)

ni = ni−1 +
kbind
v

(31)

Hence

n1 =
kbind
v

, n2 =
kbind
v

+
kbind
v

, nN =
Nkbind
v

, (32)

The rate out of the last monomer is nN × kstep, which is equal to Nkbind = kbindL
a , since L = Na, which is

equal to the depolymerisation rate, which is proportional to microtubule length L. The microtubule shortening
velocity is equal to kbindL.

c)
dL(t)

dt
= akon − kbindL (33)

In steady state:

dL(t)

dt
= akon − kbindL→ akon = kbindL

∗ → L∗ =
akon
kbind

=
1µm/min

0.05/min
= 20µm (34)
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4 Gravitoelectromagnetism and AMO physics

Prof. dr. H.L. Bethlem and W. van der Meer, M.Sc.
Quantum Metrology and Laser Applications – Vrije Universiteit Amsterdam

10 points

a) The difference in gravitational potential between a point at the surface of the earth and a point ∆h higher is

∆Φg = −GM
(

1

R+ ∆h
− 1

R

)
= g∆h.

The resulting fractional frequency shift, δf/f = ∆Φg/c
2. With g = 9.81 m/s2 and ∆h = 0.33 m, we find

δf/f = 3.6× 10−17.

b) We find the gravitomagnetic field of the earth by using the GEM version of the Biot-Savart law:

~Bg =
G

c2

∫
volume

~Jg × r̂
r2

dV.

Our problem is essentially the same as determining the magnetic field of a rotating homogeneously charged
sphere. We divide up the earth in a series of concentric current loops. We first look at a ring of radius r, at
a position z along the axis (i.e. we choose z = 0 at the center of the earth, so the distance from a ring at
position z to the North Pole is R − z with R being the radius of the earth). The ring has width dr and dz.
The mass of this ring is

dm =
M

4
3πR

3
2πrdrdz =

3M

2R3
rdrdz,

with M being the mass of the earth.
The mass current through such a ring (the mass that passes a certain point per second) is equal to

dIg =
dm

dt
=

3M

2R3

1

T
rdrdz,

with T the rotation period of the earth (i.e., the number of seconds in a day).
The contribution of a ring to the gravitomagnetic field at the North Pole is equal to:

dBgz =
G

c2
dIg

2πr

(R− z)2 + r2

r√
(R− z)2 + r2

=
G

c2
3M

2R3T
rdrdz

2πr

(R− z)2 + r2

r√
(R− z)2 + r2

The total gravitomagnetic field is found by integrating over z and r:

Bg =
3πGM

R3Tc2

∫ R

−R

∫ √R2−z2

0

r3

((R− z)2 + r2)3/2
drdz

=
3πGM

R3Tc2
4

15
R2

=
4πGM

5RTc2

Using G = 6.67428× 10−11 Nm2/kg2, M = 5.972× 1024 kg, R = 6371× 103 m and T = 24 ∗ 60 ∗ 60 = 86400
s, we find Bg = 2.025× 10−14 Hz.
In order to avoid all tedious integrals, one could assume that all mass is concentrated in an infinetely thin
ring at the equator with a radius of (say) 1

2R. The mass current through this ring is simply

Ig =
M

T
.
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The gravitomagnetic field at the North Pole due to this ring is equal to (with z = 0 and r = 1
2R):

Bgz =
G

c2
Ig

2πr

(R− z)2 + r2

r√
(R− z)2 + r2

=
G

c2
M

T

πR

R2 + 1
4R

2

1
2R√

R2 + 1
4R

2

=
G

c2
M

T

π
5
4R

1
2√

5
4

=
8πGM

5
√

5RTc2

So we find a 2/
√

5 ∼ 0.89 times smaller value than found by solving the correct integral.

c) We find the gravitomagnetic dipole moment of a hydrogen molecule by realising that

µg = IgA =
2mP

TH2

πr2
0.

With the equilibrium radius of hydrogen taken to be r0 = 0.1 nm (it is actually slightly smaller), the rotational
period, TH2

= 1/fH2
= 3 × 10−12 s, and the mass of the proton, mP = 1.672 × 10−27 kg, we find µg =

3.15× 10−34 m2kg/s.

d) The energy difference between clockwise and anti-clockwise spinning molecules (rotating in opposite direction
or in the same direction as the earth, respectively), is Wg = 2µgBg = 1.27 × 10−47 J, corresponding to a
frequency difference, δf = 1.92× 10−14 Hz, or a fractional difference, δf/f = 6.4× 10−27, unlikely to be ever
measured.
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5 Nature’s Near-Perfect Clocks

Dr. J.W.T. (Jason) Hessels
High Energy Astrophysics Radio Astronomy - UvA ASTRON

10 points

Solution: Pulsar timing b)

We need to consider by how much the model-predicted versus observed rotational phase, φ, have deviated in time:

∆φ = 1
2 ν̇∆t2.

The accumulated residual delay is 6000ms. Dividing by the rotational period, P = 650 ms, we get the number of
rotational cycles missed in the modeled ν̇: ∆φ = 9.2. The time span ∆t = 4000days = 345600000s.
Therefore, the model ν̇ is in error by ν̇err = 1.5× 10−16 s−2.

That is equivalent to Ṗerr = 6.5× 10−17 s/s.

The modeled Ṗ was thus off by only 6.5×10−17

4×10−14 = 0.2%. This demonstrates that timing of this pulsar must be
capable of determining the spin-down rate to at least a part in a thousand.
Since the residuals are becoming increasingly position with time that means that we were underestimating the Ṗ
and that the true value is 4.0065× 10−14 s/s.

Solution: Pulsar timing c)

We see that the residuals have a sinusoidal shape with a period of 365 days. This tells us that there is an error
in the position being used in the pulsar timing model. The amplitude of the sinusoid is ∼ 70 ms. If the pulsar’s
position is perfectly known, then it should be possible to perfectly barycenter the TOAs (i.e. reference the arrival
times to the position of the solar system barycenter). (NB: the geometry is simplified because we’ve assumed for
this calculation that this pulsar happens to be in the Ecliptic) The residuals shown here tell us that the posi-
tion is off such that the barycentric correction is being made for a position that corresponds to a point in the
Earth’s orbit around the Sun in which it is ∼ 70 ms early/late compared to where it should be (see Figure 4).
Θrad = s/r = 70 × 10−3 s · 300000 km s−1/150 × 106 km = 0.00014 rad. This is equivalent to 29 arcseconds.
If the individual TOA precision is 0.1 ms, then we should be sensitive to sinusoids in the residuals (due to an
incorrect position) with an amplitude of ∼ 0.1 ms (on that order). This corresponds to a positional precision of
∼ 29 arcsecond/(70 ms/0.1 ms) = 0.04 arcsecond. NB: even higher-precision positions are now routinely derived
using timing of millisecond pulsars.

Figure 4: Schematic showing how to consider the positional offset. The green position of the pulsar is correct,
whereas the red position of the pulsar is what is being used in the pulsar ephemeris.

Page 10



PION 2020 Solutions - Amsterdam

6 The Kapitza Pendulum

Prof. dr. J.S. (Jean-S ebastien) Caux
Institute for Theoratical Physics – University of Amsterdam

10 points

a) [2 pts: 1 for kinetic energy, 1 for potential energy]

Let x(t), y(t) be the coordinates of the pendulum’s mass. In terms of the angle φ(t), we have

x(t) = l sinφ(t), y(t) = d sinωt− l cosφ(t).

Using the dot notation for time derivatives,

ẋ(t) = lφ̇(t) cosφ(t), ẏ(t) = ωd cosωt+ lφ̇(t) sinφ(t).

The kinetic energy is given by

T =
m

2
(ẋ2 + ẏ2) =

ml2

2
φ̇2 +mωld φ̇ sinφ cosωt+

m

2
ω2d2 cos2 ωt.

For the potential energy, we have (up to an inconsequential constant)

V = mgy = mgd sinωt−mgl cosφ.

b) [1 pt]

Using the Lagrangian L = T − V , we obtain

∂L

∂φ̇
= ml2φ̇+mωld sinφ cosωt→ d

dt

∂L

∂φ̇
= ml2φ̈+mωldφ̇ cosφ cosωt−mω2ld sinφ sinωt,

∂L

∂φ
= mωldφ̇ cosφ cosωt−mgl sinφ.

Equating these expressions gives the expected equation of motion.

c) [1 pt]

By imagining the effect of rapidly moving the suspension point, it becomes clear that the correct expression is

2) φf (t) = −d
l

sinφs sinωt.

Namely, if the angle φ is zero, the angle does not change (excluding option 1). As the suspension moves up/down,
the angle’s absolute value is reduced/increased (excluding option 3).

d) [2 pts: 1 for sinφ expression, 1 for final expression]

For d � l, we can write (using the expression for φf from the previous sub-question, remembering the fact that
φf ∝ d

l so is small)

sinφ = sin(φs + φf ) = sinφs cosφf + cosφs sinφf ≈ sinφs

(
1− d

l
cosφs sinωt

)
.

Direct substitution in the equation of motion gives the required answer.
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e) [2 pts: 1 for evaluation of time averages, 1 for final expression]

To average over fast oscillations when ω is large, we consider averaging each term in the equation of motion over
one fast time period:

ω

2π

∫ t+ 2π
ω

t

dt′(...).

We have

ω

2π

∫ t+ 2π
ω

t

dt′ sinωt′ = 0,
ω

2π

∫ t+ 2π
ω

t

dt′ cosωt′ = 0,

ω

2π

∫ t+ 2π
ω

t

dt′ = 1,
ω

2π

∫ t+ 2π
ω

t

dt′ sin2 ωt′ =
ω

2π

∫ t+ 2π
ω

t

dt′
1

2
(1− cos 2ωt′) =

1

2
.

Applying these to the equation of motion (assuming that the slow degrees of freedom are constant over one fast
period) means that only 3 terms survive, namely the ones given in the question.

f) [2 pts: 1 for giving the equilibria, 1 for their stability]

The equation of motion for the slow degrees of freedom can be written as

d

dt

∂Leff
∂φ̇s

=
∂Leff
∂φs

, Leff = T − Veff

with the given effective potential, as can easily be verified by direct substitution.
The minima of the effective potential are determined from the condition for the equilibrium angle φes

∂Veff
∂φs

∣∣∣∣
φes

= 0 −→ sinφes

(
g

l
+

(
ωd

2l

)2

2 cosφes

)
= 0

which means that either

a) sinφes = 0 or b) cosφes = − 2gl

ω2d2
.

If the frequency ω is below ωc ≡
√

2gl/d, only the a (left) condition can be fulfilled (the trigonometric functions
must have absolute value ≤ 1). We then find two minima: a1 : φs = 0 and a2 : φs = π. Since

∂2Veff
∂φ2

s

= mgl cosφs +
m

2
ω2d2 cos 2φs

we have
∂2Veff
∂φ2

s

∣∣∣∣
a1

= mgl +
m

2
ω2d2,

∂2Veff
∂φ2

s

∣∣∣∣
a2

= −mgl +
m

2
ω2d2.

For ω < ωc, the left expression is positive, but the right one is negative. We thus conclude that the pendulum’s
equilibrium position is thus either a1 : φs = 0 (stable) or a2 : φs = π (unstable). If the frequency ω goes above
the critical value ωc however, we immediately see that solution a2 becomes stable (solution a1 always remains stable).

Furthermore, for ω > ωc, the b condition above can also be fulfilled, the equilibrium angle then taking the value

cosφes = −ω
2
c

ω2
→ b1 : φes = acos

(
−ω

2
c

ω2

)
, b2 : φes = π − acos

(
−ω

2
c

ω2

)
.

Looking at the stability condition (using cos 2φ = 2 cos2 φ− 1),

∂2Veff
∂φ2

s

∣∣∣∣
b1,2

= mgl

(
−ω

2
c

ω2

)
+
m

2
ω2d2

(
2
ω4
c

ω4
− 1

)
=
md2

2ω2

(
ω4
c − ω4

)
shows that minima b1,2 (which exist only for ω > ωc) are always unstable.

Therefore, in summary, we have the stable equilibrium points

• a1 : φs = 0 for any ω

• a2 : φs = π for ω > ωc =
√

2gl/d =
√

2ω0
l
d (where ω0 ≡

√
g/l is the natural frequency of the pendulum).
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7 Topological Mechanical Metamaterials

Dr. C.J.M. (Corentin) Coulais
Van der Waals-Zeeman Instituut - University of Amsterdam

10 points

a. Let us focus on one unit cell, located at site n, for which we assume without loss of generality that the rotor
is pointing downwards (Fig. 5)ab. The geometry of the unit cell is described in Fig. 5. Importantly, the various
geometric parameters are related by the following relations{

` cosψ = p
` sinψ = 2r cos θ

. (35)

The torque induced by the tension of the n − 1th spring is ~τn−1,n = ~r~tn−1, where ~r = r(sin θ~ex − cos θ~ey), is the

a

θ

Tn

tn
r

tn-1

ex

ey

ez

-1

b θ+δθn+1

θ+δθn

ψ+δψn

+
n

Figure 5: Sketches. (a) torque balance on unit cell n). (b) Geometry of the system in the deformed configuration.

vector describing the rotor and where the tension in the spring is ~tn−1 = −kδ`n−1(cosψ~ex − sinψ~ey), where δ`n−1

is the elongation of spring n− 1. and the torque induced by the tension of the nth spring is ~τn,n = ~r~tn, where the
tension in the bond is ~tn = kδ`n(cosψ~ex + sinψ~ey), where δ`n is the elongation of spring n. Therefore, after a few

algebraic manipulations, and using Eqs. (39) the resulting torque on rotor n, ~Tn = ~τn−1,n + ~τn,n reads

~Tn = k(aδ`n − bδ`n−1)~ez, (36)

where the coefficients a and b are  a = r cos θ p+2r sin θ√
p2+4r2 cos2 θ

b = r cos θ p−2r sin θ√
p2+4r2 cos2 θ

. (37)

We now need to establish the relation between the spring elongation δ`n and the rotations of the springs δθn. To
this end, we express the geometrical constraints in the deformed state, following Fig. 5{

(`+ δ`n) cos(ψ + δψn) = p− r(sin(θ + δθn)− sin(θ + δθn+1))
(`+ δ`n) sin(ψ + δψn) = r(cos(θ + δθn) + cos(θ + δθn+1))

, (38)

which we then linearise to first order in `n, ψn and θn{
(`+ δ`n) cosψ − ` sinψδψn = p− r cos θ(δθn − δθn+1)
(`+ δ`n) sinψ + ` cosψδψn = 2r cos θ − r sin θ(δθn + δθn+1)

, (39)

After a few algebraic manipulations, we find

δ`n = −aδθn + bδθn+1, (40)

where a and b correspond to Eq. (37). Combining Eq. (36) and Eq. (40), we can now express the torque ~Tn as a
function of the rotations of the springs as

~T0 = k(−a2δθn + abδθn+1)~ez
~Tn = k(−(a2 + b2)δθn + ab(δθn−1 + δθn+1)~ez for n ∈ [2, N − 1]
~TN = k(−b2δθn + abδθn−1)~ez

(41)

Using Newton’s law for angular momentum Jd2δθn/dt
2 = ~Tn ·~ez, where J is the second moment of inertia, we find

Eqs. (??-??).
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b. The solution to −aδθn + bδθn+1 = 0 can be solved by recursion. δθ2 = (a/b)δθ1, δθ3 = (a/b)2δθ1, δθn =
(a/b)n−1δθ1.

c. The three angular displacement profiles are shown in Fig. 6. The zero mode is exponentially localized on the left
(right) for a < b (a > b), and is delocalised for a = b. Since the ratio a/b = (p+ 2r sin θ)/(p− 2r sin θ), the mode is
localized on the left (right) for θ < 0 (θ > 0), i.e. the rotors are tilted to the left (right). The limit case where the
mode is delocalised corresponds to θ = 0, where the rotors are straight. The characteristic decay length of the zero
mode diverges when the rotor’s tilt goes to zero.

1 2 3 4 5 6 7 8 9 10
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n/
1

a/b = 3/4

1 2 3 4 5 6 7 8 9 10
n

0.0

0.2

0.4

0.6

0.8

1.0
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n/
1

a/b = 1

1 2 3 4 5 6 7 8 9 10
n

0

2

4

6

8

10

12

14

n/
1

a/b = 4/3

Figure 6: Displacement profiles of the zero-modes for a = 0.75, and b = 1 (left), a = b = 1 (middle) and a = 1 and
b = 0.75 (right).

d. We inject the ansatz δθn = δθ0 exp i(ωt − qn) into Eq. (??) and find −Jω2δθ0 = kr2 cos2 θ(−(a2 + b2) +

ab(exp(−iq) + exp(iq))δθ0. This leads to ω = ±r cos θ
√

k
J

√
D(q), where

D(q) = (a2 + b2)− 2ab cos q. (42)

e. The three dispersion relations are shown in Fig. 7. For a 6= b—when the rotors are tilted—there is a gap centred
at zero frequency. For a = b—when the rotors are straight—the gap disappears.

f. D(q) can be rewritten as D(q) = a2 + b2 − abeiq − abe−iq and factorized as D(q) = R(q)Q(q) with

R(q) = a− beiq (43)

Q(q) = a− be−iq. (44)

g. The eigenvalues λ1 and λ2 ofH(q) have the following relations λ1 = −λ2 (becauseH = 0); and λ1λ2 = −R(q)Q(q)
(because detH = −R(q)Q(q)). As a result, λ1,2 = ±

√
R(q)Q(q) are precisely equal to the frequencies ω(q) of the

mechanical system. Thereby, the mechanical and the quantum systems are strictly analogue.
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Figure 7: Dispersion relation ω vs. q for a = 0.75, and b = 1 (left), a = b = 1 (middle) and a = 1 and b = 0.75
(right).

h. The eigenvectors of H(q) are given by H(q)ψ1(q) = ω(q)ψ1(q) and H(q)ψ2(q) = −ω(q)ψ2(q), hence are given by

ψ1(q) =

( √
Q(q)
R(q)

1

)
(45)

ψ2(q) =

(
−
√

Q(q)
R(q)

1

)
. (46)

(47)

i. We first calculate ∂ψ1,2(q)/∂q = (± 1
2

√
Q(q)
R(q)

(
R′(q)
R(q) −

Q′(q)
Q(q)

)
, 0)T . The inner product becomes ψ1,2(q)∂ψ1,2(q)/∂q =

1
2

√
Q∗(q)Q(q)
R∗(q)R(q)

(
R′(q)
R(q) −

Q′(q)
Q(q)

)
for both ψ1(q) and ψ2(q). As a result, the Berry connection becomes

A(q) =
i

2

(
bieiq

a− beiq
+

bie−iq

a− be−iq

)
. (48)

To calculate the topological invariant, we need to integrate A(q) as

ν = − 1

4π

∫ 2π

0

dq

(
beiq

a− beiq
+

be−iq

a− be−iq

)
. (49)

Since the integrand is complex and has poles, we will use complex integrals. First we change variable, q → −q in
the second integrand, and the integral becomes

ν = − 1

2π

∫ 2π

0

dq
beiq

a− beiq
. (50)
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Second, we change variable z = eiq, dz/(iz) = dq. The previous integral then becomes

ν = − 1

2iπ

∫
C
dz

1
a
b − z

, (51)

where C is the unit circle in the complex plane. The integrand has one pole z = a/b. The Residues’ theorem
states that if this pole is outside of the integration contour, the integral is zero. This is the case for a/b > 1. In
contrast if there is a pole comprised in the integration contour, the residue is finite and the integral is equal to
2iπ(1/(ab − z); z = a

b ) = 2iπ limz→ a
b
(z − a

b )/(ab − z) = −2iπ. As a result, we find

ν =

{
0 for a > b
1 for a < b

(52)

The topological invariant is one (zero) when the mode is localized on the left (right) edge. The transition between
the two corresponds to the limit case when the rotors are straight.
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8 Spin dynamics due to mobile electron

Prof. dr. C.J.M. (Kareljan) Schoutens
Institute for Theoretical Physics – University of Amsterdam

10 points

a) For t� g, t� h, the leading terms in the probabilities we are looking for are of the form

P⇑,↑;⇓(t) ∝ hagbtm, P⇑;↑,⇓(t) ∝ hcgdtn .

Determine, without long calculations, the values a, b, m and c, d and n.

Starting from ψ(0), to arrive at the state ⇑, ↑;⇓ one needs the action of a term in H three times: hopping to
the right (amplitude h), spin flip ↓,⇑→↑,⇓ at site R (amplitude ∝ g) and hopping to the left (amplitude h).
This translates to a = 4, b = 2 and hence (e.g. due to a dimensional argument) m = 6. For the other process,
the hop to the left is left out and the leading term is c = 2, d = 2, n = 4.

b) Show that the total spin ~S = ~SL + ~s + ~SR commutes with H. Organise the 16 states as eigenstates S2 and
Sz and give a list of the possible values of (S2, Sz), including their respective multiplicity. Show that ψ(0)
belongs to a group of 4 eigenstates with equal values for S2 en Sz. What are these values?

For both the L and R states, we have that

[1/2]⊗ [1/2]⊗ [1/2] = [3/2]⊕ [1/2]⊕ [1/2]

This gives us

(S2, Sz) = (15/4, 3/2)2, (S2, Sz) = (15/4, 1/2)2,

(S2, Sz) = (15/4,−1/2)2, (S2, Sz) = (15/4,−3/2)2,

(S2, Sz) = (3/4, 1/2)4, (S2, Sz) = (3/4,−1/2)4.

The state ψ(0) is singlet under ~SL + ~s and hence has (S2, Sz) = (3/4, 1/2).

c) Give a basis {e1, e2, e3, e4} for the space found at b), with e1 = ψ(0) and e3 the similar state for the electron
at location R. Subsequently, write H as a 4× 4 matrix with respect to this basis.

e1 =
1√
2

(⇑, ↓;⇑ − ⇓, ↑;⇑) ,

e2 =
1√
6

(⇑, ↓;⇑+ ⇓, ↑;⇑)− 2√
6
⇑, ↑;⇓,

e3 =
1√
2

(⇑; ↓,⇑ − ⇑; ↑,⇓) ,

e4 =
1√
6

(⇑; ↓,⇑+ ⇑; ↑,⇓)− 2√
6
⇓; ↑,⇑

With

e1HLe1 = −3g

4
, e2HLe2 =

g

4
, etc.

and

e1HKe3 = h/2, e1HKe4 =
√

3h/2,

e2HKe3 =
√

3h/2, e2HKe4 = −h/2,

one finds that

H =


− 3g

4 0 h/2
√

3h/2

0 g
4

√
3h/2 −h/2

h/2
√

3h/2 − 3g
4 0√

3h/2 −h/2 0 g
4

 .
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d) We now also use the symmetry P (parity), which exchanges L and R, and define

e1,± =
1√
2

(e1 ± e3), e2,± =
1√
2

(e2 ± e4)

so that
Pei,± = ±ei,±, i = 1, 2.

Show that in the basis {e1,+, e2,+, e1,−, e2,−}, H is a block matrix,

H =

(
H+ 0
0 H−

)
,

with

H± =

(
− 3g

4 ± h/2 ±
√

3h/2

±
√

3h/2 g
4 ∓ h/2

)
.

This follows from writing H in this basis.

e) Determine the evolution operators UH(t) = exp(−iHt). Hint: first show that for a Hamiltonian M of the
form

M =

(
a b
b −a

)
,

the evolution operator UM (t) is written as

UM (t) = exp[−iMt] = cos(st)

(
1 0
0 1

)
− i sin(st)

s

(
a b
b −a

)
,

with s =
√
a2 + b2.

First, shift H± as H± = H̃± − g/4 Id, which gives overall phase ei(g/4)t. The matrices H̃± are of the form as
given above with

a+ = −g/2 + h/2, b+ =
√

3h/2, s+ =
√

(g/2− h/2)2 + 3h2/2

a− = −g/2− h/2, b− = −
√

3h/2, s− =
√

(g/2 + h/2)2 + 3h2/2

and give the evolution operators U±(t). The evolution operator for H then becomes

UH(t) = ei(g/4)t

(
U+(t) 0

0 U−(t)

)
.

f) Now give ψ(t) in the basis {e1,+, e2,+, e1,−, e2,−}.
As ψ(0) = 1√

2
(e1,+ + e1,−), one finds

ψ(t) =
1√
2

[
(cos(s+t)− i sin(s+t)

a+

s+
)e1,+ − i sin(s+t)

b+
s+

)e2,+

]
+

1√
2

[
(cos(s−t)− i sin(s−t)

a−
s−

)e1,− − i sin(s−t)
b−
s−

)e2,−

]
.

g) Determine the inner products 〈⇑, ↑;⇓ ei,±, 〈⇑; ↑,⇓ ei,± and calculate
〈⇑, ↑;⇓ ψ(t) and 〈⇑; ↑,⇓ ψ(t).

⇑, ↑;⇓e1,± = 0, ⇑, ↑;⇓e2,± = − 1√
3
,

⇑; ↑,⇓e1,± = ∓1

2
, ⇑; ↑,⇓e2,± = ± 1

2
√

3
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⇑, ↑;⇓ψ(t) =
i√
6

[
sin(s+t)

b+
s+

+ sin(s−t)
b−
s−

]
=

ih

2
√

2

[
sin(s+t)

s+
− sin(s−t)

s−

]
⇑; ↑,⇓ψ(t) = − 1

2
√

2

[
(cos(s+t)− i sin(s+t)

a+

s+
)− (cos(s−t)− i sin(s−t)

a−
s−

)

]
− i

2
√

6

[
sin(s+t)

b+
s+
− sin(s−t)

b−
s−

]
= − 1

2
√

2
[cos(s+t)− cos(s−t)]−

ig

4
√

2

[
sin(s+t)

s+
− sin(s−t)

s−

]

h) Now determine the leading terms in P⇑,↑;⇓(t) and P⇑;↑,⇓(t) for t� g, t� h and compare the result with your
prediction under a).

For small t

⇑, ↑;⇓ψ(t) =
ih

2
√

2

[
sin(s+t)

s+
− sin(s−t)

s−

]
=

ih

2
√

2

[
−1

6
s2

+t
3 +

1

6
s2
−t

3)

]
+O(t5)

=
−ih

12
√

2

[
(g/2 + h/2)2 − (g/2− h/2)2

]
t3 =

−ih2g

12
√

2
t3 +O(t5),

⇑; ↑,⇓ψ(t) = − 1

2
√

2
[cos(s+t)− cos(s−t)]−

ig

4
√

2

[
sin(s+t)

s+
− sin(s−t)

s−

]
=

1

4
√

2
(s2

+ − s2
−)t2 − ig

4
√

2

−1

6
(s2

+ − s2
−)t3 +O(t4)

= − hg

4
√

2
t2 − ihg2

24
√

2
t3 +O(t4)

such that

P⇑,↑;⇓(t) =
h4g2

288
t6 +O(t8), P⇑;↑;⇓(t) =

h2g2

32
t4 +O(t5) .
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