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Preface

Dear PION Participant,

PIONmeunig mooi that you’re participating in this year’s PION edition! We proudly
present to you the exercises of PION2019. The committee has been busy the last
couple of months to assemble this set of physics problems to challenge you. The
problems cover a whole range of physics subjects, from fluid physics up to quantum
computing. If your team is capable enough to solve these problems well enough,
you can participate in this year’s Physics League Across Numerous Countries for
Kick-ass Students in Denmark. The committee wishes your team good luck, but
most of all lots of fun!

From left to right: Frank Somhorst (problems), Aron van den Bogaard (secretary), Thies
Jansen (chairman), Jardi Timmerhuis (treasurer), Lars Bossink (external affairs).

Rules

• Please make every exercise on a separate sheet of paper stating your
team’s name! Please answer all questions in English.

• It is not allowed to use any (study)books, notes, etc. other than BINAS and
a dictionary.

• It is not allowed to communicate (about the problems) via any means with
anyone other than team members.

• It is allowed to use a scientific, graphical calculator (Ti-83, Ti-84 or a similar
model).

• Mobile phones are tolerated, but can only be used for emergencies, during the
duration of the competition.

• The winner of PION2019 is the best team, with the most points. Three teams
will get a ticket to PLANCKS: the best bachelor team and the two best teams
that are not the best bachelor team.

In cases where these rules do not provide, the PION2019-committee will decide.
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1 Graphene with a Twist

Prof. Dr. Ir. H.J.W. Zandvliet, Dr. K. Sotthewes, Dr. A. Van Houselt, Dr. E.S.
Kooij

Physics of Interfaces and Nanomaterials - University of Twente
10 points

Graphene is a two-dimensional material consisting of sp2 hybridized carbon atoms
that are arranged in a honeycomb lattice (see Figure 2). The distance between
nearest neighbour carbon atoms is a; the lattice constant amounts to a

√
3.

Figure 2: A single layer of graphene, in which carbon atoms are arranged in a honeycomb
lattice.

The unit cell of graphene contains two carbon atoms. The reciprocal lattice can be
constructed using the relation exp (iG ·R) = 1, where R=a1+a2 spans the lattice
in real space and G=b1+b2 the lattice in reciprocal space.

a) (2 pts) Determine the reciprocal lattice of graphene. Define lattice vectors a1

and a2 of the real lattice and determine length and direction of the reciprocal
vectors b1 and b2.

(2 pts) A schematic drawing of the real (a, left) and reciprocal (b, right) lattice
of graphene:
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Real lattice vectors are given by

a1 =
3a

2
x̂ +

√
3a

2
ŷ

a2 =
3a

2
x̂−
√

3a

2
ŷ

To determine the reciprocal lattice we use the relation bi · aj = 2πδij, from
which we obtain:

b1 · a2 = 0 ⇒ b1,x̂
3a

2
− b1,ŷ

√
3a

2
= 0⇒ b1,ŷ =

√
3b1,x̂

b1 · a1 = 2π ⇒ b1,x̂
3a

2
+ b1,ŷ

√
3a

2
= 2π ⇒ b1,x̂ =

2π

3a
,b1,ŷ =

2π√
3a

Similar derivation for b2, to yield:

b1 =
2π

3a
x̂ +

2π√
3a

ŷ

b2 =
2π

3a
x̂− 2π√

3a
ŷ.

To determine the scattering amplitude and phase of a reflected plane wave, the
structure factor is very helpful; it is given by S =

∑
j fj exp(−ibj · rj), where rj

represents the relative position vector of the atoms in the unit cell and fj the atomic
form factor of the carbon atoms.

b) (2 pts) Determine the structure factor of the unit cell of graphene.

(2 pts) The structure factor is given by S =
∑

j fj exp(−ibj · rj), with the form
factor fj for both carbon atoms the same; assume f1 = f2 = f = 1 in the
following.

As indicated in the figure, we now choose the center of the unit cell in the
middle of the hexagon. This leads to relative position rj for the two atoms at(

1/3, 1/3
)

and
(

2/3, 2/3
)
.

Inserting this into the structure factor yields:

S = exp

[
−2iπ

3
(h+ k)

]
+ exp

[
−4iπ

3
(h+ k)

]
with h and k the Miller indices. We immediately see that

S = 2 for h+ k = 3n with (n = 0, 1, 2, 3...)

= −1 in all other cases.

Consider two graphene layers stacked in the so-called Bernal configuration; half
of the carbon atoms in the top layer are located exactly above a carbon atom of the
bottom layer, whereas the other half are located above the center of the honeycomb
cells of the bottom layer). When the top layer is rotated by a small twist angle θ
with respect to the bottom layer, twisted bilayer graphene is formed. This structure
exhibits a so-called Moiré pattern with periodicity L, which is much larger than the
periodicity of a single layer of graphene, as shown in Figure 3.

6



PION2019 - University of Twente

Figure 3: (left) Scanning tunneling microscopy (STM) image
of twisted graphene. (right) Schematic Moiré pattern created
by rotating two graphene layers (red and blue) relative to each
other.

c) (2 pts) Schematically plot the variation of the periodicity L as a function of the
twist angle θ.

(2 pts) The graph should look something like the figure below. Periodicity
should be 60◦; L has minima at 30◦.

d) (2 pts) Derive an analytical expression for the periodicity L as a function of the
twist angle θ.

(2 pts) We consider the periodicity in a single graphene layer to amount to a
√

3,
i.e. the lattice parameter; the periodicity of the Moiré pattern is given by L.
See figure below; the reciprocal vectors k1 and k2 represent the two layers with
a relative twist angle θ.

We use that the lengths |~k1| = |~k2| = 4π
a
√

3
, corresponding to the length of

the reciprocal lattice vectors. The Moiré pattern can also be represented by a
reciprocal vector ~km, with | ~km| = 2π

L
.
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Using the cosine rule, we obtain the length of the reciprocal vector ~km

| ~km|2 = |~k1|2 + |~k2|2 − 2|~k1||~k2| cos θ (1)

⇒
(

2π

L

)2

=

(
4π

a
√

3

)2

+

(
4π

a
√

3

)2

− 2

(
4π

a
√

3

)2

cos θ (2)

⇒ L =
a
√

3

2
√

2− 2 cos θ
=

a
√

3

4 sin
(
θ/2
) (3)

The dispersion relation for electrons in graphene near the Fermi level is given by
E = ~vF|k|, where ~ is the reduced Planck constant, vF the Fermi velocity and
k the momentum of the electrons. The Fermi level can shift due to doping, as
schematically shown in Figure 4.

Figure 4: Electron dispersion relation near the Fermi level for undoped (left)
and doped (right) graphene.

e) (2 pts) Derive an analytical expression for the charge density in graphene in the
case that the Fermi level lies at an energy EF above the Dirac point, also referred
to as the charge neutrality point.

(2 pts) From the disperion relation E = ~vF|k| we obtain k = |k| = E
~vF

and
dE
dk

= ~vF .
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The density of states g(E) relates to that in k-space through, with g(k) =
(

1
2π

)2

g(E)dE = g(k)dk (4)

=

(
1

2π

)2

· 2πkdk · 2 (5)

⇒ g(E) =

(
1

2π

)2 · 2 · 2πk
dE
dk

(6)

=
1

π

k

~vF

=
E

π (~vF)2 (7)

where the factor of 2 in eq. 5 is inserted to take into account spin degeneracy.
The charge carrier (electron) density is given by

n =

∫ EF

0

2
E

π (~vF)2dE =
E2

F

π (~vF)2 (8)

where the factor of 2 reflects the fact that there are two Dirac cones in the
Brillouin zone of graphene.
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2 Three-level quantum system

Dr. J.W.J. Verschuur
Staff Applied Physics - University of Twente

10 points

Consider a three-level quantum system described by a Hermitian Hamiltonian, that
can be written as the sum of two parts:

H = H0 + λH1

where λ is a real number. The eigenstates of H0 are |1〉, |2〉 and |3〉, with corre-
sponding eigen values, given by:

H0 |1〉 = 0

H0 |2〉 = α |2〉
H0 |3〉 = α |3〉

This three-level system can be described in matrix notation. The idea is that you
obtain a full description of the system from the characteristics given below.

a) (1 pt) Write down H0 in matrix notation in the {|1〉 , |2〉 , |3〉} basis.

(1 pt) This is straight forward, since the three equations in the numeric ba-
sis |i〉 are the eigenvalue equations with the three eigen energies: 0, α and α
(degenerate).

b) (2 pts) Write down H1 in matrix notation, using the lowest amount of unknown
different matrix elements (in the same basis). Use symmetry considerations to
limit the number of elements in the matrix without losing generality.

(2 pts) A general 3 × 3 matrix has nine independent coefficients, however the
Hamiltonian needs to be Hermitian, i.e.:

Ĥ† = Ĥ

and since Ĥ0 is diagonal, Ĥ1 needs to be Hermitian, the off-diagonal coeffcients
need to be each others complex conjugates, leading to six real independent
coefficients:

Ĥ1 =

 a11 a12 a13

a12 a22 a23

a13 a23 a33


.

When the (eigenvalue) spectrum of H is computed using perturbation theory, it is
found that the eigenstates of H to lowest order in λ are:

|a〉 = |1〉

|b〉 =
1√
2

(
|2〉+ |3〉

)
|c〉 =

1√
2

(
|2〉 − |3〉

)
10
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and that the corresponding eigenvalues are:

Ea = −λ
2

α
+O(λ3),

Eb = α + λ+
λ2

α
+O(λ3),

Ec = α− λ+O(λ3).

c) (4 pts) Determine as many of the matrix elements of H1 as you can.

(4 pts) Since the energies are given in the alpha-numeric basis, it is most conve-
nient to determine Ĥ1 first in the alpha-numeric basis. From the given energies
– sorting by order of λ – we have the following three sets of equations:

For Ĥ0:

E(0)
a = 〈a|Ĥ0|a〉 = 0

E
(0)
b = 〈b|Ĥ0|b〉 = α

E(0)
c = 〈c|Ĥ0|c〉 = α

For Ĥ1, first order in λ:

E(1)
a = 〈a|Ĥ1|a〉 = 0

E
(1)
b = 〈b|Ĥ1|b〉 = λ

E(1)
c = 〈c|Ĥ1|c〉 = −λ

this results in:

a11 = 0

a22 = λ

a33 = −λ

For Ĥ1, second order in λ:

E(2)
a =

∣∣∣〈b|Ĥ1|a〉
∣∣∣2

E
(0)
a − E(0)

b

+

∣∣∣〈c|Ĥ1|a〉
∣∣∣2

E
(0)
a − E(0)

c

= −λ
2

α

E
(2)
b =

∣∣∣〈a|Ĥ1|b〉
∣∣∣2

E
(0)
b − E

(0)
a

+

∣∣∣〈c|Ĥ1|b〉
∣∣∣2

E
(0)
b − E

(0)
c

=
λ2

α

E(2)
c =

∣∣∣〈a|Ĥ1|c〉
∣∣∣2

E
(0)
c − E(0)

a

+

∣∣∣〈b|Ĥ1|c〉
∣∣∣2

E
(0)
c − E(0)

b

= 0
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which is only valid in case the unperturbed energies are different. Since E
(0)
c =

E
(0)
b , we must have:

〈b|Ĥ1|c〉 = 〈c|Ĥ1|b〉 = a23 = 0

From this we obtain:

〈a|Ĥ1|c〉 = 〈c|Ĥ1|a〉 = a13 = 0

and since:
E(0)
a − E

(0)
b = α

we obtain:
〈a|Ĥ1|b〉 = 〈b|Ĥ1|a〉 = a12 = ±λ

Which results in a perturbation Hamiltonian Ĥ1 in the alpha-numeric basis:

Ĥ
(α)
1 =

 0 ±λ 0
±λ λ 0
0 0 −λ


.

d) (2 pts) Two different bases are used in this problem, the numeric basis and the
alpha-numeric basis. Give the transformation, that relates the two bases.

(2 pts) The transformation matrix for the transformation between the numeric
and alpha-numeric basis can be derived directly from the given relations:

|αn〉 = T |n〉 =

 1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 |n〉
or the back transformation:

|n〉 = T−1 |αn〉 =

 1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 |αn〉
.

e) (2 pts) Use the transformation to represent the Hamiltonian H in both represen-
tations.

(2 pts) In order to transform the perturbation Hamiltonian Ĥ1 from the alpha-
numeric basis to the numeric basis we use:

|n′〉 = T−1Ĥ
(α)
1 |αn〉 = T−1Ĥ

(α)
1 T |n〉 = Ĥ(n) |n〉

Using the matrices to obtain the perturbation Hamiltonian in the numeric basis
we obtain:

Ĥ
(n)
1 = T−1Ĥ

(α)
1 T |n〉

=

 1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2


 0 ±λ 0
±λ λ 0
0 0 −λ


 1 0 0

0 1√
2

1√
2

0 1√
2
− 1√

2


=

 0 ± 1√
2
± 1√

2

± 1√
2

0 λ

± 1√
2

λ 0


12
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So the perturbation Hamiltonian in both bases:

Ĥ
(α)
1 =

 0 ±λ 0
±λ λ 0
0 0 −λ


Ĥ

(n)
1 =

 0 ± 1√
2
± 1√

2

± 1√
2

0 λ

± 1√
2

λ 0



.

f) (1 pt) Is either one of the two bases an eigen-system for the Hamiltonian H?

(1 pt) No. The total Hamiltonian in the alpha-numeric basis is:

Ĥ
(α)
0 + Ĥ

(α)
1 =

 0 ±λ 0
±λ α + λ 0
0 0 α− λ


and the Hamiltonian in the numeric basis is:

Ĥ
(n)
0 + Ĥ

(n)
1 =

 0 ± 1√
2
± 1√

2

± 1√
2

α λ

± 1√
2

λ α


Both representation have a total Hamiltonian that is not on diagonal form in
either one of the two bases, so the corresponding eigen-vectors deviate from
the numeric and the alpha-numeric basis sets. Calculating the eigen-values in
both representations give the same values. The corresponding eigen-vectors,
are different, since they are defined with respect to different bases.

Perturbation theory

For your convenience, the expressions to calculate the corrections in first and second
order respectively, are given by:

E
(1)
i = 〈i|H1|i〉

E
(2)
i =

N∑
j 6=i

∣∣〈j|H1|i〉
∣∣2

E0
i − E0

j

The first-order correction to the wave function is given by:

|i〉(1) =
N∑
j 6=i

〈j|H1|i〉 |j〉

Note that these expression only hold for non-degenerate perturbation theory. De-
generate perturbation, if applicable, is part of the problem.

13
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3 Putting equilibrium fluctuations to work

Dr. K.H. Mathwig and Prof. Dr. S.J.G. Lemay
Bio Electronics - University of Twente

10 points

In nanofluidics, a fluid is confined to sub-micron length scales in one or more dimen-
sion. This can cause effects which are normally too small to be noticed to become
dominant. Figure 5 shows a sketch of a lithographically fabricated nanofluidic de-
vice. It consists of a nanochannel of height ∼100 nm and width 5 µm. Electrode
pairs of length L = 50 µm are embedded in its floor and ceiling, which allows ex-
changing electrons with molecules in the fluid via electrochemical reactions. This
can be employed to create extremely sensitive detectors via so-called redox cycling.
In this method, potentials are applied to the electrodes such that the floor of the
channel can donate electrons to electrochemically active molecules that come within
the electron tunneling distance (∼1 nm) while the ceiling can similarly accept elec-
trons. Molecules undergoing Brownian motion in the nanochannel repeatedly collide
with the electrodes, ferrying electrons from floor to ceiling and thus generating a
measurable electrical current. Because of the small distance between the electrodes,
this process is very efficient and a single molecule ferries about 105 electrons/second.

Here we consider a simple model of mass transport in this system. Because of
confinement in the width and height directions, we only consider a single dimension,
x, the position along the length of the channel. The measured current is proportional
to the number of molecules present in the detection volume between the electrodes
(0 < x < L); for simplicity we take this number N(t) to represent the measured
signal. Molecules can either diffuse or undergo convection along the channel such
that the local concentration c(x, t) is given by the drift-diffusion equation,

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
− v∂c(x, t)

∂x
. (9)

Here D is the diffusion coefficient for the molecules (a constant) and v is the ad-
vection velocity of the fluid in the x direction. We do not worry about the inlet or
outlet regions, considering the channel to be infinite in the −x and +x directions.

The average number of molecules, N̄ , is simply given by the concentration of
molecules in the fluid times the volume of the detection region between the elec-
trodes. However, molecules can enter and leave the detection volume by Brownian
motion. Since molecules diffuse independently of each other, this causes N(t) to
fluctuate randomly in time around N̄ , conveniently written as N(t) = N̄ + ∆N(t).
Such fluctuations are universal for systems in diffusive equilibrium, but usually they
are too small to be detected (more precisely, ∆N/N̄ vanishes in the thermodynamic
limit). Because the present system is very small, however (volume 25 femtoliters), N̄
is small and the fluctuations ∆N(t) become observable. In fact, these fluctuations
are the dominant source of noise in sensors based on this device, as illustrated in
Figure 5(b). Here we look further into these fluctuations based on the 1D model
introduced above.
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a) (2 pts) First consider a single pair of facing electrodes. We first focus on the
purely diffusive case (v = 0). Suppose that a single molecule starts at t = 0
somewhere in the detection region, 0 < x < L. As time passes, the chance that
the molecule is still in the detection region diminishes. Give an expression for
the characteristic time scale over which this process occurs. Justify your answer
in 1-3 sentences and equations/diagrams as needed.

(2 pts) The characteristic time for diffusing a distance L is L2/2D, as can be
deduced (within the factor of 2) from dimensional analysis.

b) (4 pts) More quantitatively, we define the autocorrelation function,

C11(τ) =
〈
∆N(t)∆N(t+ τ)

〉
, (10)

where the brackets represent an average over time. Evaluate C11(τ) for this
system. We are only interested in the τ dependence; you need not normalize
your result.

(4 pts) If we are not interested in the absolute normalization, we can perform the
calculation for a single particle starting in the detection region. The probability
of finding the molecule inside the detection volume after time τ is given by∫ L

0

n(x2, τ)dx2,

where x2 represents the position at time τ . Summing over all possible initial
positions x1 at t = 0 gives the autocorrelation function,∫ L

0

dx1

∫ L

0

dx2n(x2, τ) =

∫ L

0

dx1

∫ L

0

dx2
1√

4πDτ
e−(x2−x1)2/4Dτ

=

∫ L

0

dx1

∫ (L−x1)/
√

4Dτ

−x1/
√

4Dτ

du
e−u

2

√
π

=
1

2

∫ L

0

dx1

[
erf

(
L− x1√

4Dτ

)
− erf

(
−x1√
4Dτ

)]

= L erf

(
L√
4Dτ

)
−
√

4Dτ

π

[
1− e−L2/4Dτ

]

c) (1 pt) Suppose that we now have two detectors, each of length L, localized
along the length of the nanochannel and separated by a gap of lenth g. Gap
1 is upstream and gap 2 is downstream. In the presence of a finite advection
velocity v > 0, number fluctuations at the upstream detector can propagate to
the downstream detector. If this takes too long, however, Brownian motion will
wash out the fluctuations before they can reach the second detector. Assuming
that g � L, give an estimate of the minimum characteristic velocity v required
for fluctuations to be preserved between detectors. Justify your answer in 1-3
sentences and equations/diagrams as needed.

(1 pt) Concentration fluctuations over a length scale L reorganize in time τ '
L2/D. To preserve fluctuations the transit time between the electrodes must
be shorter than this time. That is, v must satisfy g/v � τ or v � gD/L2.
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d) (3 pts) We now define the crosscorrelation function,

C12(τ) =
〈
∆N1(t)∆N2(t+ τ)

〉
, (11)

where ∆N1(t) and ∆N2(t) are the simultaneously measured fluctuations at the
upstream and downstream detectors, respectively. Derive an expression for
C12(τ), again disregarding normalization.

(3 pts) The calculation is analogous to that in (b) except that now each particle
drifts with velocity v such that

n(x2, t) =
1√

4πDt
e−(x2−x1−vτ)2/4Dt.

It follows that the cross-correlation function is

C12(τ) =

∫ L

0

dx1

∫ 2L+g

L+g

dx2n(x2, τ)

=

∫ L

0

dx1

∫ 2L+g

L+g

dx2
1√

4πDτ
e−(x2−x1−vτ)2/4Dτ

=

∫ L

0

dx1

∫ (2L+g−x1−vτ)/
√

4Dτ

(L+g−x1−vτ)/
√

4Dτ

du
e−u

2

√
π

=
1

2

[
(2L+ g − vτ) erf

(
2L+ g − vτ√

4Dτ

)
+ (g − vτ) erf

(
g − vτ√

4Dτ

)

−2(L+ g − vτ) erf

(
L+ g − vτ√

4Dτ

)]

−
√
Dτ

π

[
2e−(L+g−vτ)2/4Dτ − e−(2L+g−vτ)2/4Dτ − e−(g−vτ)2/4Dτ

]
.

Note that the answer to (b) can be recovered by setting g = −L and v = 0 in
this expression.

The cross-correlation function can be used to infer the advection velocity of the
fluid in the nanochannel, as illustrated in Figure 6 for the case g � L. This is not
a trivial achievement, as flow rates in these nanochannels are only a few drops per
year! Figure 6(c) is the result that you are asked to derive in part (d).

This question is based on K. Mathwig, D. Mampallil, S. Kang and S. G. Lemay,
Phys. Rev. Lett. 109, 118302 (2012).

Some useful mathematical details:

1. The solution to Equation 9 for a single particle starting at the origin (c(x, 0) =
δ(x)) is

c(x, t) =
1√

4πDt
e−x

2/4Dt, (12)

where c(x, t) is the probability of the particle to be present at x at time t.

16



PION2019 - University of Twente

2. You may find it convenient to use the shorthand notation for the error function,

erf(x) =
2√
π

∫ x

0

e−u
2

du, (13)

where erf(0) = 0, erf(∞) = 1, erf(−x) = − erf(x) and∫
erf(x)dx = x erf x+

e−x
2

√
π

(14)

Figure 5: (a) Schematic of the concept for measuring fluctuations in the number
of electrochemically active molecules (N(t), red balls) between two electrodes in a
nanochannel. (b) Raw current-time traces recorded at two electrode pairs located
downstream from each other. The noise is due to statistical fluctuations in N(t).
These data were obtained at a flow rate corresponding to a transit time between the
electrode pairs of approximately 0.2 s. Gray lines are guides to the eye to highlight
correlations between the two traces.
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Figure 6: (a) Cross-correlation functions of current-time traces recorded experi-
mentally at the two electrode pairs (L = 50 µm, g = 2 µm) for different pump flow
rates. (b) Cross-correlation functions obtained from a one-dimensional random walk
simulation of Equation (1). The noise in the traces at large τ is comparable to that
in panel (a) because the simulation was performed over the same time interval. (c)
Analytically derived cross-correlation function. This is a plot of the answer to part
(d) of this question.
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4 Infinite Potential

Dr. Ir. H.L. Offerhaus
Optical Sciences - University of Twente

10 points

Estimate the magnetic vector potential A inside a cylinder of radius R = 5mm and
length L = 50mm that has a current I flowing longitudinally over the surface which
is uniformly distributed over the circumference. As R << L, the cylinder can be
considered to be thin and long.

Hint: Recall that A = µ0
4π

∫
V

J
r
dV .

The magnetic vector potential A is given by:

A =
µ0

4π

∫
V

J

r
dV. (15)

Note that it follows that A has only a component in z-direction, as A is parallel
to J which is also parallel to the current I. From Maxwell it follows that∮

H · dl = Iencl. (16)

Furthermore, the following relationships hold:

B = µH, (17)

B = ∇×A. (18)

From Eq. ? it follows that within the cylinder H = 0 as Iencl = 0, such that
from Eq. 17 and 18 it follows that B = 0 and thus ∇ ×A = 0. This means
that A can be written as the divergence of some scalar field, i.e. A = ∇φ.

As A has only a non-zero component in z-direction and the hint was given that
the cylinder can be considered to be small, the variation in z-direction must be
small such that we can assume that A = const. within the cylinder.

As A = const. within the cylinder, we’ll place the origin of our cylindrical
coordinate system in the middle of the cylinder such that we have axissymetry
and the current is located at distance R. Then, we’ve got according to Eq. 15:

A = ẑ
µ0

4π

∫ L
2

−L
2

I√
z2 +R2

dz. (19)

It follows that z = R tan θ, dz = R
cos θ2

dθ and r = R
cos θ

.

From Eq. 19 it follows that:
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A = ẑ
µ0

4π

∫ L
2

−L
2

I√
z2 +R2

dz

= ẑ
µ0I

4π

∫ θmax

−θmax

1

cos θ
dθ

= ẑ
µ0I

4π
[ln

1

cos θ
+ tan θ]θmax−θmax

= ẑ
µ0I

2π
ln

1

cos θmax
+ tan θmax

(20)

since both are anti-symmetric functions of θ.

Also, tan θmax = L
2R

and cos θmax = R√
R2+L

2

2
= 2R

L

√
2R
L

2
+1
≈ 2R

L(1+ 2R2

L2 )
≈ 2R

L
(1 −

2R2

L2 ) ≈ 2R
L

, i.e. 1
cos θmax

≈ L
2R

. This gives according to Eq. 20:

A = ẑ
µ0I

2π
ln
L

R

= ẑ
µ0I

2π
ln 10

= ẑ
µ0I

2π
∗ 2.3

= ẑ0.366µ0I.

(21)

(3 pts) Realising A is homogeneous such that you only have to calculate the
value of A in the centre of the cylinder.
(3 pts) Finding the integral in the centre (doesn’t matter if integral is given in
angles or in terms of x, z).
(2 pts) Finding the integrand.
(2 pts) Completing the answer correctly.
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5 Touching Pulses

Dr. Ir. H.L. Offerhaus
Optical Sciences - University of Twente

10 points

Given is the following expression for intramodal dispersion of refractive index n1 for
a single mode through a fiber as:

λ2d
2n1

dλ2
= 0.025

and a laser that produces pulses of 20 fs duration (1/e width) centered around a
wavelength of 850 nm with a repetition frequency of 100 MHz.
How many km’s of fiber do you need to let the tail (1/e point) of one pulse be
touched by the front (1/e) of the next pulse?

Hint: Recall that the group velocity vg is given by vg = c

n1−λ dn1dλ
.

The pulse spread is due to the second order dispersion of a material which is
the derivative of the group velocity. The 1/group velocity is also known as τg,
which is given by:

τg =
1

c
(n1 − λ

dn1

dλ
). (22)

Thus, for a fiber of length L the total pulse delay τp is given by τp = Lτg.

To find the pulse spreading σp, we make a Taylor expansion to find:

σp = Lσg

= L
dτg
dλ

σλ.
(23)

We note that

dτg
dλ

=
λ

c
(
dn1

dλ
− d2n1

dλ2
− dn1

dλ
)

= −λ
c

d2n1

dλ2
,

(24)

such that

σp =
σλL

c
|λd

2n1

dλ2
|

=
σλL

cλ
|λ2d

2n1

dλ2
|.

(25)
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Furthermore,

σλ =
∆f

f
λ

=
λ2

cτ

=
(850 ∗ 10−9)2

3 ∗ 108 ∗ 20 ∗ 10−15

= 120 ∗ 10−9m.

(26)

This gives

σp
L

=
σλ
cλ
|λ2d

2n1

dλ2
|

=
120 ∗ 10−9

3 ∗ 108 ∗ 850 ∗ 10−9
∗ 0.025

= 1.176 ∗ 10−11s/m

= 1.176 ∗ 10−8s/km.

(27)

As the repetition frequency is 100 MHz, this means that there is 1 ∗ 10−8 s be-
tween two successive pulses. This means that the needs to be 1 ∗ 10−8/(1.176 ∗
10−8) = 0.85 km fiber length, i.e. slightly less than one km fiber.

(3 pts) Using the concept of group dispersion delay (or a similar quantity).
(3 pts) Using a Taylor expansion.
(2 pts) Calculating the bandwidth of the pulse.
(2 pts) Completing the answer correctly.

22



PION2019 - University of Twente

6 The Clements Decomposition

Dr. J.J. Renema
Complex Photonic Systems - University of Twente

10 points

In quantum optics, we are quite frequently interested in making a set of optical
modes interfere in a controlled fashion. Such control is particularly important when
performing quantum computations with optical systems, since the way the optical
modes interfere controls the computation which is being performed. One way to do
this is in photonic chips, where a series of waveguides is written in some dielectric
medium. Light is then typically sent into the side of the chip via optical fibers, and
the chip then functions as a kind of shunting yard for light.

In this exercise, we will explore some of the quantum mechanics of the process
of programming such a chip. In particular, we are interested in how many resources
(optical elements) are required to produce controlled interference of N distinct op-
tical modes.

If an optical system is lossless, the transformation on the optical modes is given
by a unitary matrix U , in the form of Eout = UEin, where E is the vector of electric
field amplitudes.

a) (2 pts) Explain why the fact that we require the system to be lossless means that
the number of input modes has to be equal to the number of output modes, i.e.
why U has to be a square matrix. Hint: keep in mind that linear optical systems
must obey reciprocity.

(2 pts) If the number of optical modes at the input and output were unequal,
one can ask what happens if you shine light at each of the larger set of modes
consecutively. Either light from two modes must be routed to the same mode,
which contradicts reciprocity, or some light must disappear, which contradicts
losslessness. We therefore conclude that a lossless N to M transformation is
impossible for N 6= M .

Recall that a unitary matrix is defined by the relation U †U = I, i.e. (Ui, Uj) =
δij, where (, ) is the inner product and Ui is the i-th column of U .

b) (2 pts) Explain why the lossless character of the transformation implies that U
must not just be square, but also unitary.

(2 pts) Unitary matrices preserve the vector norm, and since |E|2 is the energy
density, this is equivalent to the requirement that there is no optical loss.

We would like to have the power to program out arbitrary unitary optical trans-
formations. Surprisingly, this can be done with a relatively modest number of optical
components. To guess how many components we need, we will count the number of
free parameters in a unitary transformation.
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c) (2 pts) Compute the number of real free parameters in a unitary matrix. Hint:
begin with an arbitrary complex matrix, and consider the number of restrictions
which unitarity imposes. Furthermore, consider that since we will not re-interfere
the light after the unitary transformation, the phase of the light at the output of
the system doesn’t matter, which further reduces the number of free parameters
by N .

(2 pts) An arbitrary complex matrix has N2 independent entries, which each
have an amplitude and phase, for 2N2 real degrees of freedom. The unit norm
of the columns removes N of these (note that (x, x) is always real for any x),
and orthogonality removes N(N − 1) = N2 −N (since in the inner product we
have to make both real and compex part zero). Finally, the phase insensitivity
requirement removes a further N . This leaves us with 2N2− (N2−N)− 2N =
N2 −N degrees of freedom.

The elementary component which we have at our disposal is an arbitrary 2-by-2
optical transformation, composed of a single beam splitter and a phase shifter.

Figure 7: The Clements decomposition. Each line represents an optical mode, and
each crossing point between two modes represents an arbitrary 2-mode transforma-
tion.

d) (2 pts) Show that the number of such components required is N(N − 1)/2

(2 pts) Using the formula for N = 2 gives two degrees of freedom per 2-by-2
transformation, hence you need N(N − 1)/2 beam splitters.

e) (1 pt) What physical interpretation can you give to this number?

(1 pt) This is the total number of pairs which you can make with N modes,
which means that each mode needs to interfere with every other mode exactly
once in order to do an arbitrary transformation.

That this number of beam splitters and phase shifters is indeed sufficient to
implement an arbitrary optical transformation was rigorously proven by (then PhD
student) William Clements in 2016. His scheme has the particularly attractive
feature that it only requires transformations between adjacent modes, which means
that it can be implemented in a planar chip, i.e. without optical modes going out
of plane, which significantly simplifies fabrication. A picture of the scheme is given
in Figure 7.
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f) (1 pt) Give a simple physical argument why deleting a single row of beam splitters
from this scheme would make it no longer universal.

(1 pt) If you would delete one row, light from the top wouldn’t be able to reach
the bottom, and vice versa. Therefore, any transformation requiring this cannot
be implemented and the scheme would not be universal.
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7 Fast spinning with electrons

Dr. Ir. M. Veldhorst and Ir. N. Hendrickx
QuTech - Delft University of Technology

15 points

In quantum information it is crucial that information can be stored on quantum
bits (qubits) for a long time. In quantum computation with silicon quantum dots,
single electrons are confined with electric gates and the spin states are used to define
qubits. An important time scale is the decay time over which an electron in the spin
up state relaxes to the spin down state. This time can be measured by preparing
a spin down electron, applying a π-pulse using electron-spin-resonance (ESR) such
that the electron spin evolves to the spin up state, and by measuring the proba-
bility of the electron spin being in the spin up state as a function of waiting time.
The measurement can be done using a step called spin-to-charge conversion, see the
drawing below, where nearby charge sensors are used to detect tiny changes in the
capacitance.

Figure 8: The spin qubit quantum toolbox.

Readout

a) (1 pt) Draw the signal of the charge sensor when a quantum dot is filled with an
electron in the spin down state and tuned to the readout position. Include labels
associated with relevant time scales.

A straight line – no variation in signal is detected (up to noise). A spin down
electron cannot tunnel out and remains in the dot.

(1 pt) for correct drawing.
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b) (2 pts) Draw the signal of the charge sensor when a quantum dot is filled with an
electron in the spin up state and tuned to the readout position. Include labels
associated with relevant time scales.

A line with a ‘bump’ or ‘dip’, corresponding to an electron in the spin up state
going out and an electron in the spin down state going in.

(1 pt) for correct drawing.
(1 pt) for recognizing that the time is dependent on 1/t (t or tout and tin are
both correct).

c) (1 pt) Explain how readout leads to spin initialization and give the initialized
spin.

The end state after readout is always spin down. From answer a and b one can
see that the final signal always corresponds to a dot filled with an electron in
the spin down state.

(1 pt) for correct answer.

Qubit operation
The qubit state can be changed by applying well calibrated ESR pulses, such that
the spin rotates over a certain angle around a certain axis. Four different pulses
that can be applied are given in Figure 8.

d) (1 pt) How can we turn off spin-to-charge conversion during these operations?

There are two possibilities: the energy can be changed such that no electron
can tunnel out. Alternatively, the tunnel coupling t can be reduced such that
no electron can tunnel out.

(1 pt) for a correct answer.

e) (2 pts) Describe how the experiment to measure the spin life time needs to be
modified in order to measure the dephasing time of a single spin.

Instead of a π-pulse, one must apply a π/2 pulse before the waiting time and a
π/2 after the waiting time. The first pulse is there to prepare the electron spin
in a superposition state. The second pulse is there to return to an eigenstate
that can be measured.

(1 pt) if the answer only mentions the first π/2 pulse.
(2 pts) if both π/2 pulses are mentioned.
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A silicon spin qubit is prepared pointing along the positive x-axis direction. In
practical experiments, qubits are subject to several types of noise. Consider constant
magnetic noise, such that the actual field is 1 nT lower than targeted. Due to the
slower Larmor precession, the qubit acquires a phase shift over time as compared to
the targeted precession.

f) (1 pt) Show how one can calculate the acquired phase shift over time.

The Larmor frequency is calculated by ν = γB/2, with γ the gyromagnetic
ratio. The reduction in precession frequency is thus δν = γδB, with δB = 1nT.
Alternatively, one can also express in terms of the bohr magneton and g-factor:
δν = guBδB/~. The time dependence of the phase shift is determined by the
frequency, δθ = sin δνt).

(1 pt) for correct answer.

Assume for the following two questions that driving takes zero time and thus
time needs to be spend precessing.

g) (3 pts) Design a sequence consisting of a single pulse for a given sequence length
τ such that the qubit (prepared pointing in the positive x-axis direction) has
acquired zero phase shift compared to the situation if there was no constant
noise. Write down the sequence and include the length of each segment. Also
draw on the Bloch sphere the spin evolution due to the pulses and the noise.

The sequence consist of first waiting a τ/2, followed by applying a Y pulse, and
waiting again a time τ/2. Due to the constant noise, the qubit acquires a phase
shift , but this shift is exactly cancelled due to the application of the Y-pulse
and waiting the same time again. This can be seen in Bloch sphere drawing
below.

(1 pt) for writing sequence τ/2 - π pulse - τ/2.
(2 pts) for writing sequence τ/2 – Y (π pulse along y) - τ/2.
(1 pt) for correct drawing Bloch sphere.

h) (2 pts) Now assume the qubit is initialized at θ = π
4

from the x-axis. Give the
simplest pulse sequence for a given sequence length τ such that the qubit has
acquired zero phase shift compared to the situation if there was no noise. Draw
on the Bloch sphere the spin evolution due to the pulses and the noise.
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The sequence is now τ/4 – X - τ/4 - τ/4 – X - τ/4. Alternatively: τ/4 – Y -
τ/4 - τ/4 – Y - τ/4.

(1 pt) for correct sequence.
(1 pt) for correct Bloch sphere.

Instead of a constant magnetic noise term, the spin qubit is now subject to a
completely randomly fluctuating magnetic field.

i) (1 pt) Can you still define a pulse sequence such that for a given time τ the
qubit has acquired zero phase shift compared to its initial state? Explain why.

No. There are parts of the noise that are uncorrelated and this cannot be cor-
rect (in particular, the high frequency part cannot be perfectly corrected).

(1 pt) for correct answer.

In experiments, one encounters often a noise spectrum with a 1/f spectral density,
which is believed to originate from defects in the substrate close to the spin qubits.
Quantum operations in experiments take a finite time and we thus strive to maximize
the number of operations within the dephasing time to do meaningful quantum
calculations.

j) (1 pt) If we can find a method to double the speed at which we can do qubit
operations, can we do more, less, or exactly two times as many rotations? Explain
why.
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We can do more than two times as many rotations. One may think that we can
do twice as many rotations due to the two times faster driving. However, since
we are continuously doing rotations, components of the noise with a frequency
lower than the driving frequency will be cancelled (as observed in question g
and h), thereby increasing the coherence time. Thus, by driving faster, we can
extend the coherence time more and thus do more than two times the number
of rotations.

(1 pt) for correct answer.
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8 Pointy Ice Drops

Prof. Dr. J.H. Snoeijer, Dr. A. Marin, Dr. S.G. Huisman
Physics of Fluids - University of Twente

10 points

When a drop of liquid water is placed on a cold surface, it freezes into a singu-
lar shape. The initially rounded liquid drop is transformed into a pointy ice drop,
which at its tip exhibits a conical shape. This freezing process can be seen in the
photographs of Figure 9(ab). The water drops are initially at room temperature,
while the surface is at a temperature that can range from −10◦C to −40◦C. The key
ingredient behind this phenomenon is that the density of solid ice (ρs) is lower than
the density of liquid water (ρ`). We therefore introduce the density ratio ν = ρs/ρ`.

cba

Figure 9: (a) Photograph of a partially frozen drop, after it is placed onto a cold
surface. The bottom part of the drop has turned into solid ice (green), while the
top part is still liquid (red). (b) Photograph of the fully solidified drop, exhibiting
a conical tip. (c) The tip formation is modelled by a transformation from a liquid
“spherical cap” to a solid “cone”. Both the cap and the cone have the same base
radius R and the same angle θ.

As a first model, we assume that the unfrozen liquid mass in Figure 9(a) can
be approximated by a perfect spherical cap with a flat base, with base radius R
and angle θ – see Figure 9(c) for a definition. The volume of a spherical cap reads
Vcap = R3f(θ), with

f(θ) =
π

3

(
2− 3 cos θ + cos3 θ

sin3 θ

)
. (28)

The spherically-shaped liquid transforms into a cone of ice, with the same base ra-
dius R and the same angle θ (Figure 9(c)).

a) (1 pt) Show that the volume of the cone Vcone = π
3

tan(θ)R3.

(1 pt)
Answer 1: The volume of a pyramid or a cone reads V = 1

2
Ah2, where A is

the basal area and h the height. Using the geometric relations A = πR2 and
h = R tan θ, we find Vcone = π

3
tan(θ)R3.

Answer 2, for a slightly more complete derivation: An element of volume of
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the cone reads dV = Adh = πR2dh. One verifies that dh = tan θdR, so that
dV = πR2 tan θdR. Integrating gives V =

∫ R
0
dR̃ πR̃2 tan θ = π

3
tan(θ)R3.

An equation for the angle θ is obtained by comparing the liquid mass stored in
the spherical cap to the frozen mass of the final ice cone.

b) (2 pts) Introducing x = cos θ, show that mass conservation implies:

2x− 3x2 + x4 − ν
(
1− x2

)2
= 0. (29)

(2 pts) The mass inside the liquid cap reads ρ`Vcap, which has to equal to final
mass in the frozen cone ρsVcone. Dividing both sides by ρ` gives the equation
f(θ)R3 = ν π

3
tan(θ)R3, or in explicit form

2− 3 cos θ + cos3 θ

sin3 θ
= ν tan θ. (30)

Next, we introduce x = cos θ, so that sin2 θ = (1−x2). Multiplying the equation
by sin3 θ, this gives

2− 3x+ x3 = ν
sin4 θ

cos θ
= ν

(1− x2)2

x
. (31)

This can be rearranged to (29).

The physically relevant solution to this equation reads

x =
1√

1− ν
− 1. (32)

c) (2 pts) Determine the range of ν for which this model predicts a conical solution.

(2 pts) For a cone, the angle θ must lie in the range 0 < θ < π/2. This means
that x = cos θ must lie within 0 < x < 1. The lower bound is reached for ν = 0.
The upper bound is reached when 1/

√
1− ν = 2, which is solved as ν = 3/4.

Hence, the formation of a cone requires 0 < ν < 3/4.

The model is able to explain the formation of a cone, but unfortunately it does
not capture the phenomenon for the density ratio of water ν ≈ 0.92. The flaw of
the model based on Figure 9(c) is the implicit assumption that the freezing front is
perfectly flat. Figure 10 provides a more accurate view of the freezing front, which
has two important geometric features: (i) the front has a spherical shape, (ii) the
front ends perpendicularly to the ice-air interface.

d) (2 pts) Based on these refined assumptions, derive the mass conservation equation.

(2 pts) The liquid mass now consists of two spherical caps ρ`
[
f(θ) + f(π/2− θ)

]
R2.

This needs to be converted to the ice mass ρs
[
f(π/2− θ) + π

3
tan θ

]
R3. The

refined mass conservation equation thus reads

f(π/2− θ) + f(θ) = ν

[
f(π/2− θ)− π

3
tan θ

]
. (33)

This could be worked out in further detail, but that is not necessary for an-
swering the next question.
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freezing front

Figure 10: Sketch of the refined model. The freezing front has a (downward)
spherical shape, that ends perpendicularly to the ice-air interface.

e) (1 pt) Using a graphical calculator, determine the angle θ for ν ≈ 0.92.

(1 pt) The solution to the refined model gives θ ≈ 0.426 rad, which corresponds
to ≈ 24◦.

f) (2 pts) Provide a physical motivation why the freezing front is perpendicular to
the ice-air interface.

(2 pts) Keywords: (i) latent heat during solidification. (ii) freezing front = isotherm
(constant temperature). (iii) heat flux along temperature gradients, i.e. per-
pendicular to isotherms. (iv) negligible heat flux into the air, owing to the poor
heat conductivity of air. (v). Combining these arguments, the isotherm of the
freezing front must be perpendicular to the ice-air interface.
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9 The relativity of electric and magnetic
fields

Prof. Dr. Ir. W.G. Van der Wiel
Nano Electronics - University of Twente

10 points

Consider a negative charge q(−) moving with velocity v0 = v in frame S parallel to
a current-carrying wire as in Figure 11. The density of the (negative) conduction
electrons is ρ− and their velocity is v− = v. The density of the fixed, positive nuclear
charges is ρ+ with velocity v+ = 0 in frame S. We consider an uncharged wire, so
ρ+ = ρ−.

Figure 11: Charge q(−) and current-carrying wire in laboratory frame S in which
the wire is at rest.

a) (1 pt) What is the electric force Fel acting on charge q(−) in frame S?

(1 pt) The electric force acting on a particle with a negative charge q is given

by: ~F = −q ~E, however, the net charge density is neutral in frame S, which
means that their is no electric field. Hence, the electric force is zero.

b) (1 pt) What is the magnetic force Fmag acting on charge q(−) in frame S?

(1 pt)

Fmag = −q(~v × ~B)

~v = vẑ
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To find magnetic field use the Ampere loop method:

~∇× ~B = µ0
~J∫

Ω

~B · d~l =

∫
S

µ0
~J · d ~A

2πrBθ = −ρ+vµ0A where A is the area of the cross section of the wire.

~B = −ρ+vµ0A

2π

1

r
θ̂

⇒ Fmag = −qρ+v
2µ0A

2π

1

r
r̂

c) (1 pt) Draw a figure similar to Figure 11 for frame S’ in which the charge q(−)
is at rest.

(1 pt)

d) (1 pt) What is the magnetic force F ′mag acting on charge q(−) in frame S’?

(1 pt) In frame S’ v = 0, so no magnetic force on particle.

e) (1 pt) Derive that the positive charge density ρ′+ in frame S’ is given by

ρ′+ =
ρ+√
1− v2

c2

.

(1 pt) In frame S:

ρ+ =
Q

∆x
where Q total charge in length ∆x

In frame S’:

∆x′ =
1

γ
∆x =

√
1− v2

c2
∆x

Q′ = Q,

due to length contraction. So:

ρ′+ =
ρ+√
1− v2

c2
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f) (1 pt) Similarly, derive that the negative charge density ρ′− in frame S’ is given
by

ρ′− = ρ−

√
1− v2

c2
.

(1 pt) In frame S’:

ρ′− =
Q′

∆x′
where Q’ total charge in length ∆x′

In frame S:

∆x =
1

γ
∆x′ =

√
1− v2

c2
∆x′

Q′ = Q,

due to length contraction. So:

ρ′− = ρ−

√
1− v2

c2

g) (1 pt) Give an expression for the total charge density ρ′ in frame S’ in terms of
the positive charge density ρ+ in frame S.

(1 pt)

ρ′ = ρ′+ − ρ′−

= ρ+
1√

1− v2

c2

− ρ+

√
1− v2

c2

=
ρ+v

2

c2

√
1− v2

c2

h) (1 pt) What is the electric force F ′el acting on charge q(−) in frame S’?

(1 pt) The electric force on a particle is given by: ~F = −q ~E. To determine the
electric field use a cylinder of length l and radius r as Gausbox:

~∇ · ~E =
ρ

ε0∫
S

~E · d ~A =

∫
V

ρ

ε0
dV

= 2πrlEr =
ρ′Al

ε0

~E =
ρ′A

2πε0

1

r
r̂

⇒ F ′el = −qρ
′A

2πε0

1

r
r̂
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i) (1 pt) Show that

F ′el =
Fmag√
1− v2

c2

.

(1 pt)

F ′el = − qA

2πε0

ρ+v
2

c2

√
1− v2

c2

1

r
r̂

If we now use that c2 = 1
µ0ε0
⇒ µ0 = 1

c2ε0
we obtain the desired expression if we

compare with the previous answer.

j) (1 pt) Explain that we obtain the same physical result in both frames.

(1 pt) The Lorentz transformation for a force perpendicular to the direction of
movement is given by:

~F ′ = γ ~F ,
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